Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-cancerous cells to find the best combination of parameters in CNN to predict lung cancer accurately. The proposed system recorded the highest accuracy of 92.79%. In addition to that, the paper addresses 192 observations made using the CNN model.
Abstract
Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulatio
... Show MoreThe role of filamentous bacteria represented by Streptomycessp was studied as biological treatment for activated sludge AL- Restomia treatment unit in Baghdad city. The result shows reducing in phosphate concentration where apprise in started entrance the treatment unit 12.083 mg/L fast the unit stages reached to 8.426 mg /L where nitrate concentration apprises 3.59 mg/l and ending in 2.43 mg/L The concentration of ammonia apprises 1358 mg/L and reached to 140 mg/L. also the TDS concentration reduced from 1426 to 1203 mg/L where nutrient which represented (SO4, Mg, Ca, Na, K) reduced by range 30.883- 23.337 , 194- 121 , 440- 321 , 109.03- 101.53 and 16.85- 15.4mg/L respectively COD reduce from427.263- 82mg/L with absorbance0.018- 0.027
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreThe aim of the study is to reveal the effect of the constructivist learning Model on the achievement and reflective thinking of the fifth grade literary Preparatory students in History subject. A random sample was chosen which consisted of 64 students divided into experimental and control groups, each group consisted of 32 students. The experimental group was taught via the constructivist learning model, and the control group was taught via the traditional method. The experiment was lasted for Eight weeks, each week taught two lessons. The researcher adopted the experimental design with partial control. The two groups were equalized statistically. The researcher used two instruments, the achievement test and the reflective thinking test.
... Show MoreThe aim of the study is to reveal the effect of the constructivist learning Model on the achievement and reflective thinking of the fifth grade literary Preparatory students in History subject. A random sample was chosen which consisted of 64 students divided into experimental and control groups, each group consisted of 32 students. The experimental group was taught via the constructivist learning model, and the control group was taught via the traditional method. The experiment was lasted for Eight weeks, each week taught two lessons. The researcher adopted the experimental design with partial control. The two groups were equalized statistically. The researcher used two instruments, the achievement test and the reflective thinking test.
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
We aimed to examine the effect of amoxicillin and azithromycin suspensions on the microhardness of sliver-reinforced glass ionomer and nano-resin modified glass ionomer (GI). Method: Thirty discs (2mm height x 4mm diameter) of each type of GI were prepared, which were randomly assigned to amoxicillin, azithromycin, and artificial saliva groups. Microhardness was evaluated by Vickers hardness test before and after three immersion cycles. Results: The overall model (P < 0.001), before/after intervention (P < 0.001), intervention group (type of antibiotic) (P=0.013), and type of glass ionomer (P < 0.001) showed significant differences among study groups (P < 0.001). Post hoc test showed only non-significant before/after difference for Azithrom
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show More