Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-cancerous cells to find the best combination of parameters in CNN to predict lung cancer accurately. The proposed system recorded the highest accuracy of 92.79%. In addition to that, the paper addresses 192 observations made using the CNN model.
The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreSeveral correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show Moreالزكاة فريضة من فرائض الإسلام وعبادة من العبادات التي اقرها الشرع الإسلامي هذه الفريضة المالية التعبدية بالإضافة الى دورها المعنوي الذي يهدف الى إرساء قواعد العدالة الاجتماعية والقضاء على مشكلة الفقر في المجتمع الاسلامي وكما ينص عليها الدين الإسلامي فان لها ابعادها ووظائفها الكثيرة التي تخدم اليات العمل الاقتصادي في مجتمع يعمل وفق نظام اقتصادي أسلامي .
ان انفاق الاموال المتحصلة من فريض
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreThis work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and
... Show More