Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-cancerous cells to find the best combination of parameters in CNN to predict lung cancer accurately. The proposed system recorded the highest accuracy of 92.79%. In addition to that, the paper addresses 192 observations made using the CNN model.
Background: Breast cancer is the most common
malignancy affecting females worldwide. The association
of Epstein-Barr virus (EBV) with this cancer is a longstanding
interest to this field.
Aim: to investigate the presence of EBV in breast tumor
tissue in relation to age.
Patients and Methods: Paraffin-embedded tissue blocks
from 45 female patients with breast tumors (ranged in age
from 28 to 85 years) were retrieved. The cases were
grouped into two categories: group (A): included 30 cases
with breast carcinoma and group (B): included 15 cases
with benign breast diseases as a control group .The
expression of EBV protein was examined
immunohistochemically.
Results: Twelve (40%) of the 30 breast canc
Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was
... Show MoreObjective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy.
Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when a
... Show MoreLetrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.