The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techniques were proven to be very effective at degrading the majority of contaminants in wastewater. Using a spectrophotometer, the dye's photocatalytic browning was investigated. The theoretical calculation concentrated on the active site using the density functional theory technique and the Gaussian 09 program.
In the present study, advanced oxidation treatment, the TiO2 /UV/H2O2 process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolori
... Show MoreSuccessfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreIn this work a study was made in centrifugal fan blower to investigate the effect of impeller blade design on sound pressure level (SPL). Shroud and unshroud impeller of nine blades are used. The sound generation from flow inside the test rig at different positions was displayed by using spectral analyzer. The experiments were carried out in anechoic chamber with small holes in its walls, under ambient condition about (25-27) C ° to avoid the effect of temperature on the sound pressure level. The results showed that (SPL) decreased with the increase of distance from the source about (3-4)dB when distance varied about (0.8-1.06)m, and the (SPL) decreased with the decrease of velocity about (8-12)dB when velocity varied between (13000-260
... Show MoreIn the current study, haemoglobin analytes dissolved in a special buffer (KH2PO4(1M), K2HPO4(1M)) with pH of 7.4 were used to record absorption spectra measurements with a range of concentrations from (10-8 to 10-9) M and an absorption peak of 440nm using Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) which is considered a simple, low cost, and robust setup. The principle work of this technique depends on the multiple reflections between the light source, which is represented by the Light Emitting Diode 3 W, and the detector, which is represented by the Avantes spectrophotomer. The optical cavity includes two high reflectivity ≥99% dielectric mirrors (dia
... Show MoreAbstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
Abstract This study investigated the treatment of textile wastewater contaminated with Acid Black 210 dye (AB210) using zinc oxide nanoparticles (ZnO NPs) through adsorption and photocatalytic techniques. ZnO NPs were synthesized using a green synthesis process involving eucalyptus leaves as reducing and capping agents. The synthesized ZnO NPs were characterized using UV-Vis spectroscopy, SEM, EDAX, XRD, BET, Zeta potential, and FTIR techniques. The BET analysis revealed a specific surface area and total pore volume of 26.318 m2/g. SEM images confirmed the crystalline and spherical nature of the particles, with a particle size of 73.4 nm. A photoreactor was designed to facilitate the photo-degradation process. The study investigated the inf
... Show MoreZinc Oxide thin film of 2 μm thickness has been grown on glass substrate by pulsed laser deposition technique at substrate temperature of 500 oC under the vacuum pressure of 8×10-2 mbar. The optical properties concerning the absorption, and transmission spectra were studied for the prepared thin film. From the transmission spectra, the optical gap and linear refractive index of the ZnO thin film was determined. The structure of the ZnO thin film was tested with X-Ray diffraction and it was formed to be a polycrystalline with many peaks.
In this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show More