Preferred Language
Articles
/
bsj-8968
Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks
...Show More Authors

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Adsorption of Cd(II) and Pb(II) Ions from Aqueous Solution by Activated Carbon
...Show More Authors

Heavy metal consider as major environmental pollutants. Many of industrial wastewater effluents contain a wide range of these heavy metals. The adsorption of Cd2+ and Pb2+ metal ions from aqueous solution by activated carbon was studied. The results showed that maximum adsorption capacity occurred at 486.9×10-3 mg/kg for Pb2+ ion and 548.8×10-3 mg/kg for Cd2+ ion. The adsorption in a mixture of the metal ions had a balancing effect on the adsorption capacity of the activated carbon. The adsorption capacity of each metal ion was affected by the presence of other metal ions rather than its presence individually. The study showed the presence of other heavy metals attribute to the reduction in the activated carbon capacity, and the adsorp

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Development an Anomaly Network Intrusion Detection System Using Neural Network
...Show More Authors

Most intrusion detection systems are signature based that work similar to anti-virus but they are unable to detect the zero-day attacks. The importance of the anomaly based IDS has raised because of its ability to deal with the unknown attacks. However smart attacks are appeared to compromise the detection ability of the anomaly based IDS. By considering these weak points the proposed
system is developed to overcome them. The proposed system is a development to the well-known payload anomaly detector (PAYL). By
combining two stages with the PAYL detector, it gives good detection ability and acceptable ratio of false positive. The proposed system improve the models recognition ability in the PAYL detector, for a filtered unencrypt

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems Using Convolutional Neural Network
...Show More Authors

AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai

... Show More
View Publication
Publication Date
Tue Feb 01 2022
Journal Name
Webology
Efficient Eye Recognition for Secure Systems using Convolutional Neural Network
...Show More Authors

Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Effects of Macroeconomic Variables on Gross Domestic Product in Saudi Arabia using ARDL model for the period 1993-2019
...Show More Authors

 

This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Prediction of the Delay in the Portfolio Construction Using Naïve Bayesian Classification Algorithms
...Show More Authors
Abstract<p>Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo</p> ... Show More
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jul 20 2024
Journal Name
Sumer Journal For Pure Science
Classify the Nutritional Status of Iraqi children under Five Years Using Fuzzy Classification
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201

... Show More