Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.
This study was aimed to develop an optimized Dy determination method using differential pulse voltammetry (DPV). The Plackett-Burman (PB) experimental design was used to select significant factors that affect the electrical current response, which were further optimized using the response surface method-central composite design (RSM-CCD). The type of electrolyte solution and amplitude modulation were found as two most significant factors, among the nine factors tested, which enhance the current response based on PB design. Further optimization using RSM-CCD shows that the optimum values for the tw
... Show More
This work focuses on the implementation of interfaces for human machine interaction (HMI) for control and monitor of automatic production line. The automatic production line which can performance feeding, transportation, sorting functions.
The objectives of this work are implemented two SCADA/HMI system using two different software. TIA portal software was used to build HMI, alarm, and trends in touch panel which are helped the operator to control and monitor the production line. LabVIEW software was used to build HMI and trends on the computer screen and was linked with Micros
... Show MoreObjective (s): To determine factors associated with the pregnancy complications (Maternal age, education,
obstetrical history, gravidity, birth space interval, and smoking).
Methodology: A cross-sectional study conducted at Al- washash & Bab-almoadham primary health care
centers. The sample was (non probability convenient sample) which included (550) pregnant women. The
study started from 1st April 2014 to 1
st of April 2015. The data was collected by direct interview using
special questionnaire to obtain socio-demographic information.
Results: the result shows that mean age of the subjects was 26.5± 4.39 years, 57.8% were housewives, the
sample included 103 premature uterine contractions, 98 pregnancy induce
A study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis study was conducted in the poultry field of Al-Mustansiriya University/ Baghdad, to show the effect of adding different levels 0, 1, 5 and 10% of the fenugreek seeds in the rations containing many contaminated microbes on the productive performance of broilers. 150-day-old rose meat was used with a 41 average weight (gm), were randomly allocated to 4 treatments with 3 replicates, and for each treatment 15 chicks per repetition: 0, 1, 5, and 10% (T0-T3), respectively. The results of this study showed that fenugreek seeds contain good amounts of protein, fat, ash and carbohydrates, which are 24.92, 8.82, 3.08 and 54.28 respectively. Fenugreek seeds also have high levels of tannins, coumarins and flavones, followed by saponins,
... Show More