The optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
Abstract
These experiments seek to investigate the effects of the fixed variations to the basic box plot on subjects' judgments of the box lengths. The study consists of two experiments, were constructed as an extension to the experiments carried out previously by Hussin, M.M. (1989, 2006). Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box length and also varying with respect to other elements such as, box width or whisker length. When he (1989) suggested in the future research points (1, 2), the changing length of the st
... Show MoreA specific, sensitive and simple method was used for the determination of: vitamin B9 (Folic acid) in pure and pharmaceutical formulations using continuous flow injection analysis. The method is based on formation of ion pair compound between folic acid and ammonium molybdate in an aqueous medium to obtain a gray precipitate complex, using homemade; Ayah-6SX1-ST-2D solar cell CFI Analyzer. Optimum parameters was studied to increase the sensitivity for developed method. The linear range for the calibration graph was 0.01-0.6 mMol.L-1 of vitamin B9 and LOD was 131.994 ng/sample with correlation coefficient ( r ) of 0.9810, RSD% was lower than 0.1%, (n=9) for the determination of vitamin B9 at concentration (0.07and 0.5) mMol.L-1 respectiv
... Show MoreThis study explores the role of nanomaterials in the performance of asphalt binders and mixtures. Two commonly available nanomaterials, i.e., nanosilica (NS) and nanoalumina (NA), were used at contents of 0%, 2%, 4%, 6%, and 8% by weight of asphalt binder. A set of experiments was carried out at the binder level to investigate properties such as penetration, softening point, aging-related mass loss, nanomaterial dispersion (storage stability), and workability (rotational viscosity). In addition, the suitability of NS and NS was also assessed through the testing of nanomodified asphalt mixtures, which focused on Marshall properties, the resilient modulus, moisture susceptibility, permanent deformation, and fatigue resistance. The findings in
... Show MoreABSTRACT The importance and objectives of the study were an attempt to understand the methodology of disseminating radical thought and the reasons of social acceptability that make young people embrace this thought. It also sheds light on the impact of this phenomenon on the regional role of Egypt and examines the strategic means and standards that the Egyptian state focuses on in immunization and prevention of extremism.
University campuses in Iraq are substantial energy consumers, with consumption increasing significantly during periods of high temperatures, underscoring the necessity to enhance their energy performance. Energy simulation tools offer valuable insights into evaluating and improving the energy efficiency of buildings. This study focuses on simulating passive architectural design for three selected buildings at Al-Khwarizmi College of Engineering (AKCOE) to examine the effectiveness of their cooling systems. DesignBuilder software was employed, and climatic data for a year in Baghdad was collected to assess the influence of passive architectural strategies on the thermal performance of the targeted buildings. The simulations revealed that the
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreThe present study develops the sorption model for simulating the effects of pH and temperature on the uptake of cadmium from contaminated water using waste foundry sand (WFS) by allowing the variation of the maximum adsorption capacity and affinity constant. The presence of two acidic functional groups with the same or different affinity is the basis in the derivation of the two models; Model 1 and Model 2 respectively. The developed Bi-Langmuir model with different affinity (Model 2) has a remarkable ability in the description of process under consideration with coefficient of determination > 0.9838 and sum of squared error < 0.08514. This result is proved by FTIR test where the weak acids responsible of cadmium ions removal
... Show MoreBackground: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room tempe
... Show MoreExperimental research was carried out to investigate the effect of fire flame (high temperature) on specimens of short columns manufactured using SCC (Self compacted concrete). To simulate the real practical fire disasters, the specimens were exposed to high
temperature flame, using furnace manufactured for this purpose. The column specimens were cooled in two ways. In the first the specimens were left in the air and suddenly cooled using water, after that the specimens were loaded to study the effect of degree of
temperature, steel reinforcement ratio and cooling rate, on the load carrying capacity of the reinforced concrete column specimens. The results will be compared with behaviour of columns without burning (control specime