Preferred Language
Articles
/
bsj-888
Plasma Heating of Tokamak by Microwaves at Electron Cyclotron Resonance Heating (ECRH)
...Show More Authors

The brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 30 2014
Journal Name
Al-kindy College Medical Journal
Discrimination of Malignant from Acute Benign Compression Spinal Fractures with Magnetic Resonance imaging
...Show More Authors

Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Jordan Journal Of Physics
Theoretical Simulation of Backscattering Electron Coefficient for SixGe1-x/Si Heterostructure as a Function of Primary Electron Beam Energy and Ge Concentration
...Show More Authors

Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Assessment of image quality of cervical spine complications using Three Magnetic Resonance Imaging Sequences
...Show More Authors

Examining and comparing the image quality of degenerative cervical spine diseases through the application of three MRI sequences; the Two-Dimension T2 Weighed Turbo Spin Echo (2D T2W TSE), the Three-Dimension T2 Weighted Turbo Spin Echo (3D T2W TSE), and the T2 Turbo Field Echo (T2_TFE). Thirty-three patients who were diagnosed as having degenerative cervical spine diseases were involved in this study. Their age range was 40-60 years old. The images were produced via a 1.5 Tesla MRI device using (2D T2W TSE, 3D T2W TSE, and T2_TFE) sequences in the sagittal plane. The image quality was examined by objective and subjective assessments. The MRI image characteristics of the cervical spines (C4-C5, C5-C6, C6-C7) showed significant difference

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Approximations of Minimum Approach Distance in Electron Mirroring Phenomena
...Show More Authors
Abstract<p>The minimum approaches distance of probing electrons in scanning electron microscope has investigated in accordance to mirror effect phenomenon. The analytical expression for such distance is decomposed using the binomial expansion. With aid of resulted expansion, the distribution of trapped electrons within the sample surface has explored. Results have shown that trapped electron distributes with various forms rather an individual one. The domination of any shape is mainly depend on the minimum approaches distance of probing electrons</p>
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Surface Plasmon Plastic Optical Fiber Resonance with Multi-Layer as Chemical Sensor
...Show More Authors

A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It  was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Photonic Sensors
Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer
...Show More Authors
Abstract<p>The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub>) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub> to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb<sup>−1</sup> and 0.922 °·ppb<jats></jats></p> ... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Oct 31 2024
Journal Name
Iraqi Geological Journal
Artificial Neural Network Application to Permeability Prediction from Nuclear Magnetic Resonance Log
...Show More Authors

Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Photonic Crystal Fiber Pollution Sensor Based on the Surface Plasmon Resonance Technology
...Show More Authors

Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (10)
Scopus Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Study of opacity broadening in spectral lines for helium like ions in aluminum plasma which produced by laser
...Show More Authors

A theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.

View Publication Preview PDF
Crossref