The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.
The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe purpose of this research is to study the organic planning in the United Industry Alliance, focusing on an applied model. It takes the concept of good planning, and its importance in the overall picture, well into political, economic, and military policy. It also analyzes how the United States has used this year to address the challenges that nationalism targets. The research draws on typical examples to illustrate the differences between researcher and decision effectiveness. It also discusses the factors that lead to the success or failure of dynamic planning, and draws lessons from it in other countries. Finally, the researcher begins to help in planning the goal as a basic tool in enhancing effectiveness.
This research aims at studying a contemporary and modern phenomenon in the Science of management in general and in the field of organizational behavior in private, The organizational learning and managerial empowerment in a governmental organization :"The General Company of Electric Industries" .The dimensions of organizational learning have been defined (Learning Dynamics، organization transformation, individuals empowerment, knowledge management and Technology application) as wells as the dimensions of managerial empowerment (possessing the information and its availability– Independency and the freedom of conduct and knowledge possession) Information has been gathered by a questionnaire distributed on a sample of professiona
... Show MoreThis paper introduces a Laplace-based modeling approach for the study of transient converter-grid interactions. The proposed approach is based on the development of two-port admittance models of converters and other components, combined with the use of numerical Laplace transforms. The application of a frequency domain method is aimed at the accurate and straightforward computation of transient system responses while preserving the wideband frequency characteristics of power components, such as those due to the use of high frequency semiconductive switches, electromagnetic interaction between inductive and capacitive components, as well as wave propagation and frequency dependence in transmission systems.
Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreTransit agencies constantly need information about system operations and passengers to support their regular scheduling and operation planning processes. The lack of these processes and cultural motivations to use public transportations contributes enormously to the reliance on the private cars rather than public transportation, resulting in traffic congestions. The traffic congestions occur mainly during peak hours and the accidents happening as a result of road accidents and construction works. This study investigates the effects of weekday and weekend travel variability on peak hours of the passenger flow distribution on bus lines, which can effectively reflect the degree of traffic congestion. A study of passen
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreReservoir rock typing integrates geological, petrophysical, seismic, and reservoir data to identify zones with similar storage and flow capacities. Therefore, three different methods to determine the type of reservoir rocks in the Mushrif Formation of the Amara oil field. The first method represents cluster analysis, a statistical method that classifies data points based on effective porosity, clay volume, and sonic transient time from well logs or core samples. The second method is the electrical rock type, which classifies reservoir rocks based on electrical resistivity. The permeability of rock types varies due to differences in pore geometry, mineral composition, and fluid saturation. Resistivity data are usually obtained from w
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti