The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThis research aims at making a comparative survey between the dry season in (2017-2018) and the wet season (2018-2019) in Iraq concerning the variation of rainfall and pressure systems responsible for such a difference. In this paper, seven climatological stations have been selected: Mosul, Kirkuk, Khanaqin, Baghdad, Rutba, Diwaniyah and Basra. Results have shown that the first category of rainfall of the two seasons has recorded a higher number of rainy days in comparison with the second and third categories with a total of 274 day in a dry season and 403 day of a wet season. Further, the total amount of the annual continuous rain is higher than the total of thunderstorms in a dry season as well as in the
... Show MoreObjective: The study aimed to screen the prepubertal children for idiopathic scoliosis at earlier stages, and find
out the relationship between idiopathic scoliosis and demographic data such as age, sex, body mass index,
heavy backpacks, and heart & lung diseases.
Methodology: A descriptive study was conducted on screening program for prepubertal children in primary
schools at Baghdad city, starting from 24th of February to the end of October 2010. Non- probability
(purposive) sample of 510 prepubertal children were chosen from primary schools of both sides of Al-Karkh
and Al-Russafa sectors. Data was collected through a specially constructed questionnaire format include (24)
items multiple choice questions, and
Abstract
The project of balad's major sewerage system is one of the biggest projects who is still in progress in salahulddin province provincial - development plan that was approved in 2013 . This project works in two parts ; the 1st is installing the sewerage networks (both of heavy sewerage & rain sewerage) and the 2nd is installing the life – off units (for heavy sewerage & rain sewerage , as well) . the directorate of salahuiddin is aiming that at end of construction it will be able to provide services for four residential quarters , one of the main challenges that project's management experience is how to achieve thes
... Show MoreThe progress of science in all its branches and levels made great civilized changes of
our societies in the present day, it's a result of the huge amount of knowledge, the increase of
number of students, and the increase of community awareness proportion of the importance of
education in schools and universities, it became necessary for us as educators to look at
science from another point of view based on the idea of scientific development of curricula
and teaching methods and means of education, and for the studying class environment as a
whole, by computer and internet use in education to the emergence of the term education
technology, which relies on the use of modern technology to provide educational content to<
The purpose of this paper is to recognize the impact of database levels on fields of banking service (provision of remittance services and transfer of funds, save financial deposits, provision of personal loans services) in some of Iraqi banks using one-way multivariate analysis of variance. The paper population consisted of (120) employees, then a random stratified sample of (104) employees was taken. A questionnaire paper consists of (24) items were designed in order to analyze by one-Way multivariate analysis of variance (MANOVA) using SPSS.One of the main findings of the current paper is that there is an impact of database on fields of banking service in Iraqi banks (Al Rafidain and Al Rasheed).
The effect of compound machine on wheat/ AlNoor cultivar was studied based on some technical indicators. were tested under three speeds ( 2.541, 3.433 and 4.091km.hr-1) and three tillage depths (14, 16 and 18cm). The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the 2.541km.hr-1 practical speed was significantly better than other two speed in all studied conditions. Except for the FC, which achieved the best results with the third speed 4.091 km.hr-1. mechanical parameters, plant growth parameters and yield and growth parameters. The 1
Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show More
his project try to explain the using ability of spatial techniques for land cover change detection on regional level with the time parameter and did select for explain these abilities study case (Hewaizah marsh ) . this area apply to many big changes with the time. These changes made action on characters and behaviors of this area as well as all activities in it . This Project concerting to recognize the Using importance of remote sensing and GIS Methodology in data collecting for the changes of land use and the methodology for the analyses and getting the results for the next using as a base data for development and drawing the plans as well as in regional planning .This project focus on practical
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show More