Preferred Language
Articles
/
bsj-8875
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
Clinical Analysis of Four Maternity Deaths in Iraq by COVID-19
...Show More Authors

 

This study aims to identify maternal death cases caused by Coronavirus infection 2019 pneumonia, including disease progression, fetal consequences, and the fatality cause.

Patients and methodology: A retrospective case collection of Iraqi pregnant women in their second and third trimesters diagnosed with COVID-19 pneumonia and died due to it.

The four cases were all of a young age, had a brief complaint period, and had no comorbidities. Fever, dyspnea, and fatigue were the most common symptoms. Hypoxia was present in all cases and was the cause of mortality in three cases, with thromboembolism being a potential cause in the fourth. Prelabour membrane breakup, fetal growth restriction, and fetal death are al

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 12 2020
Journal Name
Al-kindy College Medical Journal
A Brief view on the pediatric COVID- 19 pandemic
...Show More Authors

The world is currently challenging the serious effects of the pandemic of the Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Data on pediatric COVID are rare and scattered in the literature. In this article, we presented the updated knowledge on the pediatric COVID-19 from different aspects. We hope it will increase the awareness of the pediatricians and health care professionals on this pandemic.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Al-kindy College Medical Journal
Assessment of the Awareness of COVID-19 among the Students Enrolled in Different Medical Universities of Pakistan: A Cross Sectional Survey
...Show More Authors

Background: The study was designed for the assessment of the knowledge of medical students regarding pandemics. In the current designed study, the level of awareness was checked and the majority of students were found aware of SARS-CoV and SARS-Cov2 (Covid-19).

Objective: To assess the awareness of SARS-CoV and SARS-Cov2 (Covid-19) among medical students of Pakistan.

Subjects and Methods: A cross-sectional survey was carried out in different universities of Pakistan from May to August 2020. A self-constructed questionnaire by Pursuing the clinical and community administration of COVID-19 given by the National Health Commission of the People's Republic of China was used am

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Effect of Individuals Asymptomatic (Carrier) on The Dynamical Behavior Of a COVID-19 Virus
...Show More Authors

     In this paper, a novel coronavirus (COVID-19) model is proposed and investigated. In fact, the pandemic spread through a close contact between infected people and other people but sometimes the infected people could show two cases; the first is symptomatic and the other is asymptomatic (carrier) as the source of the risk. The outbreak of Covid-19 virus is described by a mathematical model dividing the population into four classes. The first class represents the susceptible people who are unaware of the disease. The second class refers to the susceptible people who are aware of the epidemic by media coverage. The third class is the carrier individuals (asymptomatic) and the fourth class represents the infected ind

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Al-kindy College Medical Journal
Integrated Problem Based Learning (PBL) Evaluation by Students in Kerbala Medical College
...Show More Authors

Background: Scientific education aims to be inclusive and to improve students learning achievements, through appropriate teaching and learning. Problem Based Learning (PBL) system, a student centered method, started in the second half of the previous century and is expanding progressively, organizes learning around problems and students learn about a subject through the experience of solving these problems.Objectives:To assess the opinions of undergraduate medical students regarding learning outcomes of PBL in small group teaching and to explore their views about the role of tutors and methods of evaluation. Type of the study: A cross-sectional study.Methods: This study was conducted in Kerbala Medical Colleges among second year students

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 08 2021
Journal Name
مجلة العلوم و التكنولوجية للنشاطات البدنية و الرياضية
The effectiveness of using (7E’s) learning cycle in learning a movement chain on the uneven bars in the artistic gymnastics for women
...Show More Authors

Abstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Main Difficulties Faced by EFL Students in Language Learning
...Show More Authors

Many undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers.  This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning.  A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study wh

... Show More
View Publication Preview PDF
Crossref (9)
Crossref