Copper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticles. Copper nanoparticles were prepared using gelatin biopolymer, CuSO4.5H2O ions and hydrazine as stabilizer, precursor salt and reducing agent respectively. However, vitamin C and NaOH solution were also employed as an antioxidant and pH adjuster. The synthesized copper nanoparticles were characterized using UV-visible spectroscopy (UV-vis), thermogravimetric analysis (TGA), zeta potential measurements powder, X-ray diffraction (XRD), field emission scanning electron microscope and transmission electron microscope (TEM). The UV-visible absorption spectrum confirms the formation of the CuNPs, which showed maximum absorbance at 583 nm. Results obtained from TEM indicated a decrease in size of particle from a low concentration to high concentration of the supporting materials. The optimum concentration of gelatin was found to be 0.75 wt%. The supporting materials used for this synthesis are biocompatible and the obtained products are stable in air. The synthesized CuNPs display promising antibacterial activities against B. subtilis (B29), S. aureus (S276), S. choleraesuis (ATCC 10708) and E. coli (E266) as gram positive and negative bacteria respectively.
Background: Poly-ether-ether-ketone(PEEK) has been introduced to many dental fields. Recently it was tested as a retainer wire‎ following orthodontic treatment. This study aimed to investigate the effect of changing the bonding spot size and location on the performance of PEEK retainer wires. Methods: A biomechanical study involving four three-dimensional finite element models was performed. The basic model was with a 0.8 mm cylindrical cross-section PEEK wire, bonded at the center of the lingual surface of the mandibular incisors with 4 mm in diameter composite spots. Two other models were designed with 3 mm and 5 mm composite sizes. The last model was created with the composite bonding spot of the canine away from the center of t
... Show MoreIn this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
The article aims to consider the concept of language metaphor in Russian and Arabic languages and the problem of metaphor functioning in language, since it is one of the most important figurative components of the structural organization of the text and an important means of reflecting the national culture of each people. and often in revealing the image of a metaphor one can feel the full flexibility of the language and its beauty.
the student of the structure of the city and its constituent elements will clearly sense the invisible relationships that underlie the different forms of urban activity, which in turn are defined by the generality of the urban patterns in that city, which will vary clearly according to the location in the city. These relations will be embodied in their true form in the interactions between the different uses of the earth, and the change that will result from their regularity in the form of entities in independent groups, which may share with each other a component of it.
Therefore, the process of controlling the functional interactions between the uses of the urban land and the awareness of t
Objectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropom
... Show MoreGas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery us
... Show More