Preferred Language
Articles
/
bsj-8819
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jul 03 2011
Journal Name
Journal Of Educational And Psychological Researches
Effect of using the active learning in the achievement of third grade intermediate students in mathematics and them tendency towards the study of its
...Show More Authors

Current research aims to find out:

  1. Effect of using the active learning in the achievement of third grade intermediate students in mathematics.
  2. Effect of using of active learning in the tendency towards the study of mathematics for students of third grade intermediate.

In order to achieve the goals of the research, the researcher formulated the following two hypotheses null:

  1. There is no difference statistically significant at the level of significance (0.05) between two average of degrees to achievement

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of organizational learning dimensions on availability of learning organization dimensions in Iraqi planning ministry
...Show More Authors

The aim of this research to study.

The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :

The first to the research methodology, the second to the theoretical review o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Engineering And Sustainable Development
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2008
Journal Name
Journal Of Educational And Psychological Researches
التعلم التعاوني وأثره على التحصيل والاتجاه نحو الحاسب الآلي عند طلبة كلية التربية بجامعة بغداد
...Show More Authors

هدفت هذه الدراسة إلى مقارنة أثر أسلوب التعلم التعاوني بالأسلوب التقليدي في التحصيل الدراسي، وعلاقته بالاتجاه نحو الحاسب الآلي عند طلبة كلية التربية بجامعة بغداد خلال دراستهم لمقرر الحاسب الآلي وقد تضمنت إجراءات الدراسة استخدام الأسلوب التجريبي، وذلك بتوزيع أربع شعب دراسية على مجموعتين: "مجموعة تجريبية" يتم تدريسها باستخدام أسلوب التعلم التعاوني، والمجموعة الثانية: "مجموعة ضابطة" يتم تدريسها بالطريق

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
The Philosophy of Organizational Forgetting In Frame of Learning and Organizational knowledge
...Show More Authors

current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Asian Journal Of Applied Sciences
Comparison between Expert Systems, Machine Learning, and Big Data: An Overview
...Show More Authors

Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.

View Publication
Crossref (2)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Effect of Humic acid, Cytokinin and Arginine on Growth and Yield Traits of Bean Plant Phaseolus vulgaris L. under salt stress
...Show More Authors

To achieve optimal plant growth and production under salt stress, some products were added in adequate quantities to give a good yield, especially bean plants which are sensitive to salinity. For this purpose, this experiment was carried out during the spring growing season in 2022 in Baghdad, to study the effects of humic acid, cytokinin, arginine and their interaction with 9 parameters that reflect the overall traits of vegetative growth and yield of common bean plants Phaseolus vulgaris L. var. Astraid (from MONARCH seeds, China). The factorial design with 3 replicates was used, each with 7 plants treated via foliar spraying or by addition to the soil. The first factor included three groups; H0, H1 and H2 (0, 6, 12 Kg.h-1 H

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref