Preferred Language
Articles
/
bsj-8819
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Corporate And Business Strategy Review
The role of learning organizations in crisis management strategy: A case study
...Show More Authors

The problem of the paper focused on the role of the learning organization in the crisis management strategy, and the extent of the actual interest in both the learning organization and the crisis management and aimed at diagnosing and analyzing that and surrounding questions. The Statistical Package for the Social Sciences (SPSS) program was used to calculate the results and the correlation coefficient between the two main variables. The methodology was descriptive and analytical. The case study was followed by a questionnaire that was distributed to a sample of 31 teachers. The paper adopted a seven-dimensional model of systemic thinking that encourages questioning, empowerment, provision of advanced technologies, and strategic lea

... Show More
View Publication
Scopus (13)
Crossref (8)
Scopus Crossref
Publication Date
Mon Nov 03 2025
Journal Name
Journal Of Physical Education
The Effect of Varied Teaching Strategies on Learning Backstroke Swimming for Students
...Show More Authors

View Publication
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (26)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Fri Apr 22 2022
Journal Name
Galore International Journal Of Health Sciences And Research
Use of Flavonoids and Green Tea Extracts as Antioxidants Induced by Oxidative Stress: A Review Article
...Show More Authors

The aim of this work is to shed light on the importance of medicinal plants, especially those that have extracts that have a direct effect on human health. The study and identification of botany is necessary because human life has become closely linked to the life of plants as food . In addition to using plants as food, primitive man did not stop at this point, but rather developed their use to hunt prey and also used toxic plant materials in wars. With the passage of time, the ancient man was able to link the wild plants that cover the surface of the earth and the diseases that afflict him, so he used these plants or Parts of it are for treatment. A medicinal plant is defined as one or more of its parts that contain one or more che

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Galore International Journal Of Health Sciences And Research
Use of Flavonoids and Green Tea Extracts as Antioxidants Induced by Oxidative Stress: A Review Article
...Show More Authors

The aim of this work is to shed light on the importance of medicinal plants, especially those that have extracts that have a direct effect on human health. The study and identification of botany is necessary because human life has become closely linked to the life of plants as food. In addition to using plants as food, primitive man did not stop at this point, but rather developed their use to hunt prey and also used toxic plant materials in wars. With the passage of time, the ancient man was able to link the wild plants that cover the surface of the earth and the diseases that afflict him, so he used these plants or Parts of it are for treatment. A medicinal plant is defined as one or more of its parts that contain one or more chemicals in

... Show More
Preview PDF
Publication Date
Wed Apr 28 2021
Journal Name
Plants/mdpi
Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative‐Stress‐Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells
...Show More Authors

The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric‐reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 μmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time‐of‐fli

... Show More
Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
IMPACT OF ANXIETY AND STRESS DURING PREGNANCY UPON NEONATAL OUTCOME AT MATERNITY HOSPITALS IN BAGHDAD CITY
...Show More Authors

Objective: To assess the impact of anxiety and stress during pregnancy upon neonatal outcome Methodology: A descriptive purposive study was used to assess the impact of anxiety and stress during pregnancy upon neonatal outcome. The study was conducted from (22nd \ September \ 2020 to 15th \ February \ 2021). A non-probability sample (purposive sample) was selected from 100 women. Data were collected through an interview with the mother in the counseling clinic, during the third trimester of pregnancy, as well as after childbirth in the labour wards to assess the outcome of pregnancy. Data were analyzed through descriptive statistics (frequency and percentages). Results: The most important thing observed in this study was the n

... Show More
Preview PDF