Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou
... Show MoreThe study aims to measure the level of academic stress in the e-learning environment in three areas, students and their dealing with classmates, dealing with the professor and technical skills, and the nature and content of the curriculum among graduate students in the College of Education at King Khalid University during COVID-19 pandemic. This study was descriptive in nature (survey, comparative). The sample consisted of (512) male and female graduate students in the master's and doctoral programs. The Academic Stress Scale in the E-learning Environment designed by Amer (2021) was used. The results indicated a high level of academic stress among graduate students in the e-learning environment. The study also found that there were stati
... Show MoreCultivation of the green seaweed Enteromorpha compressa was performed under natural laboratory spring environmental conditions of temperature, light intensity and photoperiod to study the salinity tolerance of this intertidal green macroalga. Cultivation was carried out under artificial seawater (ASW) of different concentrations (18, 35, 53 and 106 g/l sea salt) compared to the control using natural seawater (NSW). Growth rate and pigment content of the cultivated alga were recorded at regular intervals during the experimental duration. Antioxidant activity of the crude ethanolic extract and its fractions (petroleum ether, chloroform, ethyl acetate and acetone) was performed against DPPH radical scavenging assay and compared to
... Show MoreLattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o
... Show MoreThe conducted research was done in Grda rasha field (Salahaddin University) for one month to compare the impacts of Alcea kurdica powder, Rifaxmine, and Ranitidine as anti-lesion and immune-strengthening agents on stress-induced quails which are affecting their growth rate and in severe cases causing gizzard erosion and deep intestinal lesions. To do that, 75 quails (12 weeks old) were grouped into six treatments with different additives. (T0-) = Negative control (Stress-induced Without treatment), (T0+) = Positive control (No stress inducing or treatment). T1= (treated with Rifaximine 200mg/L water mixed), T2= (treated with Ranitidine 200mg/L), T3= (treated with A.kurdica extract 100mg/L). The tested groups,
... Show MoreThe COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the
... Show More