Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
Objecte The study aims to test the effect of using the appropriate quantitative method of demand forecasting in improving the performance of supply chain of the aviation fuel product ( The study sample), One of the products of the Doura refinery (The study site), By testing a set of quantitative methods of demand forecasting using forecasting error measurements, and choosing the least faulty, most accurate and reliable method and adept it in the building chain.
Is the study of problem through a starting with the fol
... Show MoreThe study aimed to effect of speed and die holes diameter in the machine on feed pellets quality. In this study was measured pellet direct measurement (%), pellet lengths (%), pellet durability (%) and pellet water absorption (%). Three die speeds 280, 300, and 320 rpm, three diameters of die holes in the machine 3, 4, and 5 mm, have been used. The results showed that increasing the pellet die speeds from 280 to 300 then to 320 rpm led to a significant decrease in direct measurement, pellet durability, and pellet water absorption was increased, whereas it did not significantly affect the pellet lengths. Increasing the die holes diameter from 3 to 4 then to 5 mm led to a significant de
Background: For patients with coronavirus disease(COVID-19), continuous positive airway pressure (CPAP) has been considered as a useful treatment. The goal of CPAP therapy is to enhance oxygenation, relieve breathing muscle strain, and maybe avoid intubation. If applied in a medical ward with a multidisciplinary approach, CPAP has the potential to reduce the burden on intensive care units. Methods: Cross-sectional design was conducted in the ALSHEFAA center for crises in Baghdad. Questionnaire filled by 80 nurses who work in Respiratory Isolation Unit who had chosen by non-probability (purposive) selection collected the data. Then the researcher used an observational checklist to evaluate nurses’ practice. The data was analyzed us
... Show MoreBackground: This review aims to discuss various canine retraction techniques using frictionless mechanics. Methods: Between 1930 and February 2022, searches were conducted about various canine retraction techniques using fixed orthodontic appliances in various databases, including PubMed Central, Science Direct, Wiley Online Library, the Cochrane Library, Textbooks, Google Scholar, Research Gate, and manual searching. Results: After removing the duplicate articles, publications that described how to use archwires to perform canine retraction with the archwires were included. Conclusions: The pros and cons of various canine retraction techniques using archwires were thoroughly discussed. T-loop is the preferred spring of all because of it
... Show Morein this work the polymides were prepared as rthemally stable polymers by diffrent ways
Background: This review aimed at explaining different methods of canine retraction along the archwire. Methods: Searching for different methods of canine retraction using fixed orthodontic appliances was carried out using different databases, including PubMed Central, Science Direct, Wiley Online Library, the Cochrane Library, Textbooks, Google Scholar, Research Gate, and hand searching from 1930 till February 2022. Results: After excluding the duplicate articles, papers describing the methods of canine retraction along the archwires were included. The most commonly used methods are NiTi closed coil spring and elastic chain. Conclusions: Various methods of canine retraction along the archwires were explained in detail regarding their adv
... Show More