Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
This study aims to recognize the process of using computer in publicschools in Ma`an governorate in terms of hardware, capabilities, and teachers usage. It also aims to identify the most important obstacles those schools face from a teachers perspective.
The study sample consists of (150) teachers from different disciplines. The researcher prepared two questionnaires related to the research pivotal, then presented to a group of arbitrators to be used in this final form. The data was analyzed statistically and the study concluded that there is a shortage in the computer services provided to teachers, and there is a w
... Show MoreThe aim of this research is to solve a real problem in the Department of Economy and Investment in the Martyrs establishment, which is the selection of the optimal project through specific criteria by experts in the same department using a combined mathematical model for the two methods of analytic hierarchy process and goal programming, where a mathematical model for goal programming was built that takes into consideration the priorities of the goal criteria by the decision-maker to reach the best solution that meets all the objectives, whose importance was determined by the hierarchical analysis process. The most important result of this research is the selection of the second pro
... Show MoreIn this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
Molecularly imprinted polymers (MIPs) are an effective method for separating enantiomeric compounds. The main objective of this research is to synthesize D-arabinitol MIPs, which can selectively separate D-arabinitol and its potential application to differentiate it from its enantiomer compound through a non-covalent approach. A macroporous polymer was synthesized using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate (EGDMA) being a cross-linker, dimethylsulfoxide (DMSO) being a porogen, as well as benzoyl peroxide being an initiator. After polymer synthesis, D-arabinitol was removed by a mixture of methanol and acetic acid (4:1, v/v). Fourier-Transform Infrared spectroscopy (FT-IR) and Scan
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
The aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq. In this study, the pre- and post-test were done and the instruments were administered to the students for data collection. The data was analyzed and statistical results rejected null hypothesis of this study. This study revealed that there are no signifigant differences between PBL and PBL with lecture method, thus the PBL without or with lecture method enhances the self-directed learning skills bette
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Poverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreTable tennis is considered one of the fast base sports that the player needs to have the speed of performance and awareness, especially in straight forward and back strikes, which is an important offensive skills, and the player success depends on his perception speed to the point of the fall of the ball in the arena of his competitor. But there is no way to measure cognitive processing speed. Therefore, the researchers sought to design a test that measures this ability to ensure its scientific evaluation, and then establish standard scores for this test for the players of the specialized school of table tennis, to help evaluate them objectively and move away from subjective estimates when evaluating and developing measuring instruments in
... Show MoreA new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show More