Preferred Language
Articles
/
bsj-8819
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2025
Journal Name
Case Studies In Construction Materials
Optimized stress-strain modeling of eco-friendly fiber-reinforced concrete members using meta-heuristic algorithms
...Show More Authors

Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (15)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (43)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Gingival Enlargement Management using Diode Laser 940 nm and Conventional Scalpel Technique (A Comparative Study)
...Show More Authors

Diode lasers are becoming popular in periodontal surgery due to their highly absorption by pigments such as melanin and hemoglobin their weak absorption by water and hydroxyapatite makes them safe to be used around dental hard tissues. Objective: The aim of the present study was to evaluate the efficiency of diode laser in performing gingivectomy in comparison to conventional scalpel technique in patients with chronic inflammatory enlargement. Materials and methods: Thirty patients were selected for this study. All of them required surgical treatment of gingival enlargements and were randomly divided into two groups: Control group (treated by scalpel and include sixteen patients) and study group (treated with diode laser 940nm and includ

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 28 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluation of shear bond strength of artificial teeth to heat cure acrylic and high impact heat cure acrylic using autoclave processing method
...Show More Authors

Background: Debonding and fracture of artificial teeth from denture bases are common clinical problem, bonding of artificial teeth to heat cure acrylic and high impact heat cure acrylic denture base materials with autoclave processing method is not well known. The aim of this study was to evaluate the effect of autoclave processing method on shear bond of artificial teeth to heat cure denture base material and high impact heat cure denture base material. Materials and methods: Heat polymerized (Vertex) and high impact acrylic (Vertex) acrylic resins were used. Teeth were processed to each of the denture base materials after the application of different surface treatments. The sample (which consist of artificial tooth attached to the dentur

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 08 1998
Journal Name
Journal Of King Saud University
Moment Capacity and Strength of Reinforced Concrete Members Using Stress- Strain Diagrams of Concrete and Steel
...Show More Authors

Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Sizing and Thermal Stability of Prepared Tetraaminophthalocyaninatocopper(II) Derivatives-grafted Polymers
...Show More Authors

Different polymers were prepared by condensation polymerization of sebacic anhydride and adipic anhydride with ethylene glycol and poly(ethylene glycol). Their number average molecular weights were determined by end group analysis. Then, they were grafted on the prepared phthalocyaninatocopper(II) compounds with the general formula (NH2)4PcCu(II) having amino groups of 3,3',3'',3'''- or 4,4',4'',4'''- positions. All prepared polymers, compounds, and phthalocyaninatocopper(II)-grafted polymers were characterized by FTIR. The sizing measurements were carried out in 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) compounds with and without grafting polymers. The results showed that the grafting process led to decreasing in par

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Petroleum And Coal
Analyzing of Production Data Using Combination of empirical Methods and Advanced Analytical Techniques
...Show More Authors

Scopus (1)
Scopus