Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreDue to increased consumption of resources, especially energy it was necessary to find alternatives characterized by the same quality as well as being of less expensive, and most important of these alternatives are characterized by waste and the fact that humancannot stop consumption. So we have consideredwaste as an alternative and cheap economic resources and by using environmental index the MIP (input materials per unit ,unit / service) is based on the grounds that the product is not the end of itselfit is a product to meet the need of a product or service, awarded a resource input and output within the five basic elements are the raw materials is ecological, Raw materials ecological, water, air and soil erosion for a
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibr
... Show MoreThis study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreClean water supply is one of the major factors contributing significantly to society’s socio-economic transformation by improving living standards, health, and increasing productivity. It is imperative to plan and construct appropriate water supply systems in modern society, which supply various segments of society with safe drinking water according to their requirements to ensure adequate and quality water supply. In the current study, here was an attempt to develop a model for geographic information systems to manage the assets of the water distribution networks in the Karrada region and to evaluate the network geometrically, and from the results of the engineering analysis of the
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreBaqubah city has grown extremely rapidly. The rate of growth exceeds the growth of services that must grow side by side with the growth of population. There are natural features that affect the growth of Baqubah city such as Dieyala river, Alssariya river, in addition to agricultural areas .All these natural features affect the growth of Baqubah city in the running form being seen . In this research the remote sensing and geographic information system (GIS) techniques are used for monitoring urban expansion and forecasting the probable axes to the growth of the city, and found that the probability of Baqubah growth to east is preferred due to Baqubah growth to the east would never interfere with natural features. Also in this res
... Show MoreGroupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show More