In this work a fragile watermarking scheme is presented. This scheme is applied to digital color images in spatial domain. The image is divided into blocks, and each block has its authentication mark embedded in it, we would be able to insure which parts of the image are authentic and which parts have been modified. This authentication carries out without need to exist the original image. The results show the quality of the watermarked image is remaining very good and the watermark survived some type of unintended modification such as familiar compression software like WINRAR and ZIP
The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on th
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreAn intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show Moreيهدف هذا البحث الى التطرق الى صورة العربي كما يعرضها ادب اليافعين العبري في رواية " نادية " للكاتبة العبرية " كاليلا رون فيدر " . والتي تعد من الاديبات العبريات اللواتي تطرقن بصورة مباشرة الى موضوع ما خلف الجدار ، والصراع العربي – الإسرائيلي وانعكاساته على المجتمع الإسرائيلي بصورة عامة والمجتمع العربي بصورة خاصة . ينقسم هذا البحث إلى ثلاثة فصول، تطرق الفصل الأول إلى "ادب اليافعين"، و تاريخه ، مميزاته والفئ
... Show MoreThe laboratory experiment was conducted in the laboratories of the Musayyib Bridge Company for Molecular Analyzes in the year 2021-2022 to study the molecular analysis of the inbreed lines and their hybrids F1 to estimate the genetic variation at the level of DNA shown by the selected pure inbreed lines and the resulting hybrids F1 of the flowering gene. Five pure inbreed lines of maize were selected (ZA17WR) Late, ZM74, Late, ZM19, Early ZM49WZ (Zi17WZ, Late, ZM49W3E) and their resulting hybrids, according to the study objective, from fifteen different inbreed lines with flowering time. The five inbreed lines were planted for four seasons (spring and fall 2019) and (spring and fall 2
Detection of virulence gene agglutinin-like sequence (ALS) 1 by using molecular technology from clinical samples (
In recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show More