In this paper, we calculate and measure the SNR theoretically and experimental for digital full duplex optical communication systems for different ranges in free space, the system consists of transmitter and receiver in each side. The semiconductor laser (pointer) was used as a carrier wave in free space with the specification is 5mW power and 650nm wavelength. The type of optical detector was used a PIN with area 1mm2 and responsively 0.4A/W for this wavelength. The results show a high quality optical communication system for different range from (300-1300)m with different bit rat (60-140)kbit/sec is achieved with best values of the signal to noise ratio (SNR).
The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY
This paper presents a parametric audio compression scheme intended for scalable audio coding applications, and is particularly well suited for operation at low rates, in the vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus Noise (SN). The principal component of the system is an. overlap-add analysis-by-synthesis sinusoidal model based on conjugate matching pursuits. Perceptual information about human hearing is explicitly included into the model by psychoacoustically weighting the pursuit metric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal listening tests demonstrated that our coder gave competitive performance to the-state-of-the- art HelixTM Producer Plus 9 from
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreThe Local manufacturing scanning gamma system designed in Tuwaitha site for nondestructive assay method of radioactive waste drums, where it consist of two main parts with their belongings for controlling the of detector and drum movements up-down and rotation respectively. The volume of the used drum is 220 L with 85 cm height. The drum filled with Portland cement. Six cylindrical holes were made within cement drum and distributed in radial arrangement.The152Eu source inserted in these holes individually, to measure the average angular count rate of gamma radiation. The full energy efficiency value for geometry of drum and detector is computed for thirteen photo peaks. The average efficiency represented by the curve of these peaks indic
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreThe goal of this work is demonstrating, through the gradient observation of a of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of ( -system) was developed based on finite time ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo
... Show MoreThe research dealt with the study (interpretation of space in the art of installation), and it is located in four frameworks, the first is devoted to clarifying the research problem, its importance and the need for it, its goal, and its limits, and determining the most important terms contained therein.The research problem was determined from the question, does space embody those different and diverse materials that were formulated and installed by the artist into modern forms? Is the product of synthetic arts an appropriation of these spaces and domination of them?The problematic of interpreting space in its conceptual dimension in (synthetic) art in its multiplicity, diversity and difference, or objecting to the work of artistic system
... Show MoreThe elements of theater formation that fall within the spatial experience of the scenography of the show, which the directors work in in the imaginary theater, are important and have an aesthetic, intellectual and cognitive dimension, working to highlight reality in an aesthetic image surrounding space and space. And its relationship to the distinct, multiple and variable spaces above the stage, to produce theatrical signals and endless meanings through the possibility of infinite reconfiguration of the theater's space and its public and private space through the distribution of a group of blocks within the scenic image.
I dealt with in the first chapter (the methodological framework), which includes the research problem identified