Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreAnal fistula is an anorectal condition with over 90% of cases being
cryptoglandular in origin and occurring after anorectal abscesses. The traditional method of
treatment of an anal fistula is by excision or de roofing the tract awaiting complete healing.. Aim:
The aim of this study is to assess the efficacy of diode laser 980 nm in the treatment of low fistula in
ano. Methods: The study was performed between June 2019 to end of September 2019, at the
institute of laser for postgraduate study in Baghdad university. A cohort of ten male patients with a
provisional diagnosis of low type anal fistula were selected for this study and treated by interstitial
photothermal therapy of fistula epithelium by diode laser 980nm
The most popular medium that being used by people on the internet nowadays is video streaming. Nevertheless, streaming a video consumes much of the internet traffics. The massive quantity of internet usage goes for video streaming that disburses nearly 70% of the internet. Some constraints of interactive media might be detached; such as augmented bandwidth usage and lateness. The need for real-time transmission of video streaming while live leads to employing of Fog computing technologies which is an intermediary layer between the cloud and end user. The latter technology has been introduced to alleviate those problems by providing high real-time response and computational resources near to the
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show MoreAs a consequence of a terrorist attack, people may experience posttraumatic stress disorder (PTSD) and lack of feeling secure in relationships. This longitudinal study aimed to examine the prevalence of PTSD symptoms over time, the relationship between adult attachment styles and PTSD, as well as their association with degree of exposure, and finally to consider the distribution and the trajectory of attachment styles. The sample consisted of 235 students (M=125, F=110) who were exposed to different levels of trauma intensity in response to a bombing attack. Participants were recruited and assessed approximately 1 month and 5 months after the attack using a battery of questionnaires. Findings revealed, as expected, that 79.5% of the part
... Show More