Preferred Language
Articles
/
bsj-8564
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 20 2019
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of Heat Exchanger Performance by Using Dimpled Tube
...Show More Authors

The enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%.  The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Aug 30 2025
Journal Name
Iraqi Journal Of Science
A Face Mask Detection Method in the Era of the COVID-19 Pandemic Based on GLCM and YOLO
...Show More Authors

In recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Mar 08 2020
Journal Name
Biochem. Cell. Arch
SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF NEW HETEROCYCLIC COMPOUNDS DERIVATIED FROM 1-(4-AMINOPHENYL) ETHAN-1-ONEOXIME AS A STARTING MATERIAL WITH EVALUATE THEIR BIOLOGICAL ACTIVITY
...Show More Authors

ABSTRACT : This research involves the synthesis of five to seven heterocyclic compounds starting with Schiff’s bases which derived from oxime as a starting material. 1.3-oxazepine derivatives were prepared from adding different anhydrides to the Schiff bases, tetrazole and thiazolidinone derivatives synthesized from add sodium azide and thioglycolic acid to the same Schiff’s bases as a five members ring. Pyrimidine derivatives were prepared after the reaction of the azomethine group with acetyl chloride and then urea and thiourea to synthesis on derivatives contain the six members ring. Another step included identified and confirmed these compounds by FT- IR, 1HNMR, TLC and 13CNMR finally, step included the assay of biological activity

... Show More
Publication Date
Fri May 16 2025
Journal Name
Asean Journal Of Science And Engineering
Enhancing Predictive Maintenance in Energy Systems Using a Hybrid Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) Framework for Rotating Machinery
...Show More Authors

This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks
...Show More Authors

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Fuzzy-assignment Model by Using Linguistic Variables
...Show More Authors

      This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jan 10 2019
Journal Name
The Astrophysical Journal
A Deeply Buried Narrow-line Seyfert 1 Nucleus Uncovered in Scattered Light
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Oct 31 2025
Journal Name
Mathematical Modelling Of Engineering Problems
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine Learning-SPIKE Model
...Show More Authors

Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 02 2016
Journal Name
World Journal Of Pharmaceutical Research
HISTOGENESIS AND HISTOMORPHOMETRIC STUDY ON KIDNEY DISORDER BY LAMOTRIGINE IN POSTNATAL RAT
...Show More Authors

Background: Lamotrigine is a second generation Anti-epileptic drug; it is widely used for the treatment of epilepsy and bipolar disorder. Sufficient data is not available concerning its teratogenicity. Aim of the study: The study has been carried out to evaluate the effect of lamotrigine on Rat kidney development. Materials and Methods: The study was conducted on 10 pregnant Albino Rats (Rattus rattus) divided equally into two groups, control and experiment groups. Experiment group received lamotrigne 10mg/kg/day orally using naso-gastric tube from the first day of gestation until the first week after birth, while the control group received distilled water. Newborn kidneys were collected at day 7 postnatal and fixated in bouin’s solution,

... Show More
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Fractional Local Metric Dimension of Comb Product Graphs
...Show More Authors

The local resolving neighborhood  of a pair of vertices  for  and  is if there is a vertex  in a connected graph  where the distance from  to  is not equal to the distance from  to , or defined by . A local resolving function  of  is a real valued function   such that  for  and . The local fractional metric dimension of graph  denoted by , defined by  In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph  and graph , where graph  is a connected graphs and graph  is a complate graph &

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref