Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreMany designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high
... Show MoreThe growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreThe objective of this study was to evaluate the alteration in levels of gonado trophins hormones i.e.,Leutizing (LH),Follicular(FSH) in sera of patients with thyroid disorders and molecular binding study of (LH ,FSH) with their antibodies The study was conducted at the specialized center for endocrinology and diabetes from January / 2009 to March / 2010.Two hundreds and twenty three Iraqi subjects, 109 patients with thyroid disorders at age range between (40-50) years and 114 healthy individuals as control group were included in this study.The majority of patients were female with hyperthyroidism and (49.54 % ) were at age range between(40 - 50) years. The levels of hormones(LH,FSH.tri iodothyronine(T3).thyroxine(T4), thy
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreHuman beings are under the threat of the environment they are living in. With the course of time, they seriousness of this threat and its effect in changing their life . The most common threat that human beings might pass through is the trauma which is commonly bound with wars. The greater trauma that human beings might have is the threatening sudden facing or death facing. Consequently there would be disorder especially War disorder. This Phenomenon is clearly observed in Iraqi society as Iraq has been passing through continuous wars and disasters namely during and after the American Invasion. These events might lead to changes in Peoples behavior and to Social Violence. Thus, the Study aims at:
In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q, this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show More