Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
The traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show More
The aim of this research is to determine the most important and main factors that lead to Preeclampsia. It is also about finding suitable solutions to eradicate these factors and avoid them in order to prevent getting Preeclampsia. To achieve this, a case study sample of (40) patients from Medical City - Oncology Teaching Hospital was used to collect data by a questionnaire which contained (17) reasons to be investigated. The statistical package (SPSS) was used to compare the results of the data analysis through two methods (Radial Bases Function Network) and (Factorial Analysis). Important results were obtained, the two methods determined the same factors that could represent the direct reason which causes Preecla
... Show MoreA medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un
... Show MoreBackground: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National
Film and literature exchanges it’s influences since the early beginning of the motion pictures appearance .it was a phenomenon in other genres such as theatre ,short stories and novels .the film used out of this interaction with literature the content , themes and subjects whish were more attached to the society. based on that , the film gains it’s successes and wide spread of influences on it’s audiences who became more familiar with the motion picture style.Astrok , the French film critic wrote about “Camera the pain “ and called it as the a way of writing in the future .he was talking about the future’s role of the film .It is the importance of the film in the creation and documenting the life and its various fields.Becaus
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreDue to increased consumption of resources, especially energy it was necessary to find alternatives characterized by the same quality as well as being of less expensive, and most important of these alternatives are characterized by waste and the fact that humancannot stop consumption. So we have consideredwaste as an alternative and cheap economic resources and by using environmental index the MIP (input materials per unit ,unit / service) is based on the grounds that the product is not the end of itselfit is a product to meet the need of a product or service, awarded a resource input and output within the five basic elements are the raw materials is ecological, Raw materials ecological, water, air and soil erosion for a
... Show MoreCognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show More