Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
The Sequencing Batch Reactor system (SBR) is a major component of the municipal wastewater biological treatment system and water reclamation that provides high-quality water that could be reused in restricted plants that which require large quantities of water despite the lack of water. The research aims to investigate the performance of a pilot plant SBR unit under real operation conditions that was installed and operated in Al-Rustamiya Wastewater Treatment Plant (WWTP), Baghdad, Iraq. Results showed that the BOD5/COD ratio of the raw wastewater was within the average value at 0.66 emphasizing the organic nature of the influent flow and hence the amenability to biological treatment. The results also ensured that the treatment pro
... Show MoreLiquid – liquid equilibria data were measured at 293.15 K for the pseudo ternary system (sulfolane + alkanol) + octane + toluene. It is observed that the selectivity of pure sulfolane increases with cosolvent methanol but decreases with increasing the chain length of hydrocarbon in 1-alkanol. The nonrandom two liquid (NRTL) model, UNIQUAC model and UNIFAC model were used to correlate the experimental data and to predict the phase composition of the systems studied. The calculation based on NRTL model gave a good representation of the experimental tie-line data for all systems studied. The agreement between the correlated and the experimental results was very good
The study aims to study the geographical distribution of electricpower plants in Iraq, except the governorates of Kurdistan Region (Dohuk, Erbil, Sulaymaniyah) due to lack of data.
In order to reach the goal of the research was based on some mathematical equations and statistical methods to determine how the geographical distribution of these stations (gas, hydropower, steam, diesel) within the provinces and the concentration of them as well as the possibility of the classification of power plants in Iraq to facilitate understanding of distribution in a scientific manner is characterized by objectively.
The most important results of the research are that there are a number of factors that led to the irregular distribution
... Show MoreRadiotherapy is medical use of ionizing radiation, and commonly applied to the cancerous tumor because of its ability to control cell growth. The amount of radiation used in photon radiation therapy called dose (measured in grey unit), which depend on the type and stage of cancer being treated. In our work, we studied the dose distribution given to the tumor at different depths (zero-20 cm) treated with different field size (4×4- 23×23 cm). Results show that the deeper treated area has less dose rate at the same beam quality and quantity. Also it has been noted increasing in the field increasing in the depth dose at the same depth even if the radiation energy is constant. Increasing in radiation dose attributed to the scattere
... Show More