Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet tem
... Show MoreThe technological developments in the field of communication have witnessed considerable impact in the variables which exist in following up and conveying the events which link it’s meaning to political implications. This makes a number of satellite channels depend on the techniques of propaganda and use them in the news bulletins to achieve political aims and ends related to its formational directives where those channels allotted a considerable time in its programming transmission map to concentrate on the security and political status to complete the image of the informational scene according to the logic of its propaganda and styles in processing news for daily events.The technological developments in the field of communication hav
... Show Moreinsulin-like Growth Factor 1 (IGF-1) gene has been described in several studies as a candidate gene for growth. The present study attempts to identify associations between body weight traits and polymorphisms at 279 position of 5'UTR flanking region of IGF-1 gene in broiler chickens. Three hundred broiler chickens from two breeds (Cobb 500 and Hubbard F-15) were used in this study. A single nucleotide polymorphism (SNP) at 279 position of 5'UTR region of the IGF-1 gene was identified in 20.6 and 60.3% of Cobb 500 and Hubbard F-15, respectively, using the PCR-RFLP technique. Allele frequencies were 83.87 and 42.80% for the T allele and 16.13 and 57.20% for the C allele in Cobb500 and Hubbard-15 breeds, respectively. Genotype frequencies were
... Show MoreBackground: One of the most predominant periodontal diseases is the plaque induced gingivitis. For the past 20 years, super-oxidized solutions have be..