Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
A water resources management for earthen canal/stream is introduced through creating a combination procedure between a field study and the scientific analytical concepts that distinguish the hydraulic problems on this type of stream with using the facilities that are available in HECRAS software; aiming to point the solutions of these problems. Al Mahawil stream is an earthen canal which is subjected to periodic changes in cross sections due to scour, deposition, and incorrect periodic dredging processes due to growth of the Ceratophyllum plants and weeds on the bed and banks of the stream; which affect the characteristics of the flow. This research aims to present a strategy of water resources management through a field study that conducte
... Show MoreBackground: This study aimed to determine the cephalometric values of tetragon analysis on a sample of Iraqi adults with normal occlusion. Material and methods: Forty digital true lateral cephalometric radiographs belong to 20 males and 20 females having normal dental relation were analyzed using AutoCAD program 2009. Descriptive statistics and sample comparison with Fastlicht norms were obtained. Results: The results showed that maxillary and mandibular incisors were more proclined and the maxillary/mandibular planes angle was lower in Iraqi sample than Caucasian sample. Conclusion: It's recommended to use result from this study when using tetragon analysis for Iraqis to get more accurate result.
The research aims to evaluate the radioactivity in elected samples of cereals and legume which are wide human consumption in Iraq using Nuclear Track Detectors (NTDs) model CN-85.
The samples were prepared scientifically according to references in this field. After 150 days of exposure, the detector were collected and chemically treated according to scientific sources (etching chemical), nuclear effects have been calculated using the optical microscope.
Radon (222Rn) concentration and uranium (238U) were calculated in unit Bq/m3 and (ppm), the results indicate that the highest concentration of radon and uranium was in yellow corn where the concentration of radon was 137.17×102 Bq/m3 and uranium concentration 2.63 (ppm). The lowest
The measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi
Background: The evaluation of the chronological age is a practical method in crime investigation field that assists in identifying individuals to treat them as underage or adult. This study aimed to assess the stages of third molars mineralization in relation to chronological age of Iraqi individuals, determine the gender differences and arches (maxillary/mandibular) differences.
Materials and Methods: A total of 300 orthopantomograms of orthodontic patients were collected according to specific criteria and evaluated visually. The developmental stages of maxillary and mandibular third molars were determined according to Demirjian method. T
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MorePower switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin
... Show MoreAs cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show More