Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
An experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm) , was tested under climate condition of Baghdad city with a (43° tilt angel) by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width), which was manufactured from iron painted with a black matt.
The experimental test deals with five types of absorber:-
Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber .
The hourly and average efficiency of the collectors
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreCommunity detection is useful for better understanding the structure of complex networks. It aids in the extraction of the required information from such networks and has a vital role in different fields that range from healthcare to regional geography, economics, human interactions, and mobility. The method for detecting the structure of communities involves the partitioning of complex networks into groups of nodes, with extensive connections within community and sparse connections with other communities. In the literature, two main measures, namely the Modularity (Q) and Normalized Mutual Information (NMI) have been used for evaluating the validation and quality of the detected community structures. Although many optimization algo
... Show MoreThis research deals with one scene from the movie Romeo and Juliet, which is the balcony scene, due to the importance of this scene in the formation of the construction of the subsequent events of the movie.
The first chapter contained the methodological framework of the research, where the research problem was identified in how Zeffirelli dealt with the balcony scene in the play Romeo and Juliet and enriched it in the cinematic language with a comparison with the original text of the scene. In the balcony scene with comparative parts between the film and the text and the limits of the research that was limited to the film Zeffirelli and the translated text by Munis Taha Hussein.
The second chapter contained the theoretic
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Malaysia has been supported by one of the high-speed fiber internet connections called TM UniFi. TM UniFi is very familiar to be used as a medium to apply Small Office Home Office (SOHO) concept due to the COVID-19 pandemic. Most of the communication vendors offer varieties of network services to fulfill customers' needs and satisfaction during the pandemic. Quality of Services is queried by most users by the fact of increased on users from time to time. Therefore, it is crucial to know the network performance contrary to the number of devices connected to the TM UniFi network. The main objective of this research is to analyze TM UniFi performance with the impact of multiple device connections or users' services. The study was conducted
... Show MoreThis research addresses the employment of public relations for foreign oil corporate social responsibility programs operating in Iraq. It is a study of the programmes of six petroleum companies operating in Basra Governorate, which were selected for research as the highest production of Iraqi oil, as well as its enjoyment of strategic oil stores in Iraq.It contains the largest oil fields operatedby major international companies. This study aims at a number of objectives, notably the following:1)Recognize the most prominent corporate social responsibility projects and initiatives the companies have introduced to the local public.2)Investigate the extent to which the Iraqi publ
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreThe tax system, like any other system, as a set of elements and parts that complement each other and are interrelated and interact to achieve specific goals, and is a natural reflection of the economic, social and political conditions prevailing in society, and therefore the objectives of tax policy formulated in line with the objectives of economic policy in general, which means that any change in economic policy clearly affects fiscal policy measures and fiscal policy in particular.
The problem of searching for the impact of foreign direct investment in the Iraqi tax system was focused on the study the of foreign direct investment and therole played in developing and improving the economic reality and its implicatio
... Show More