This Study aimed to studying the effect of Volatile oil extracted from the leaves of Myrtus communis on the growth and activities of the following types of bacteria: Staphylococcus aureus, Streptococcus pyogenes, Klebsilla pneumoniae, Pseudomonas aeruginosa, and the yeast Candida albicans. The results showed an inhibitory effect of the oil on both the growth and activity of the tested microbes. This was reflected by the minimum inhibitory concentration (MIC) of Staphylococcus aureus, Streptococcus pyogenes, Klebsilla pneumoniae, Pseudomonas aeruginosa which was: (2.5, 1.25, and 2.5,5 % respectively), and the yeast (5) %. Also, the Minimum bactericidal concentration (MBC) to the bacteria mentioned above was (5, 2.5,5,10 % respectively) while the yeast was (10) %.
Some of the issues that have become common in our society recently after the Americans entered our country and were rubbed by some security agencies: obtaining some information from children, and the serious consequences that may lead to the lives of innocent people, became common interrogation of some security agencies and rely on their words.
There are significant cases where their testimony needs to be heard, such as their presence in some places where incidents are not witnessed by others, such as schools or being witnesses to certain crimes.
I saw the study of this case in the light of Sharia and law
Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreWe study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
This paper proposes a new encryption method. It combines two cipher algorithms, i.e., DES and AES, to generate hybrid keys. This combination strengthens the proposed W-method by generating high randomized keys. Two points can represent the reliability of any encryption technique. Firstly, is the key generation; therefore, our approach merges 64 bits of DES with 64 bits of AES to produce 128 bits as a root key for all remaining keys that are 15. This complexity increases the level of the ciphering process. Moreover, it shifts the operation one bit only to the right. Secondly is the nature of the encryption process. It includes two keys and mixes one round of DES with one round of AES to reduce the performance time. The W-method deals with
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreThe concept of the active contour model has been extensively utilized in the segmentation and analysis of images. This technology has been effectively employed in identifying the contours in object recognition, computer graphics and vision, biomedical processing of images that is normal images or medical images such as Magnetic Resonance Images (MRI), X-rays, plus Ultrasound imaging. Three colleagues, Kass, Witkin and Terzopoulos developed this energy, lessening “Active Contour Models” (equally identified as Snake) back in 1987. Being curved in nature, snakes are characterized in an image field and are capable of being set in motion by external and internal forces within image data and the curve itself in that order. The present s
... Show MoreIn this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.