Preferred Language
Articles
/
bsj-8547
Classification of Diseases in Oil Palm Leaves Using the GoogLeNet Model
...Show More Authors

The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Hydrology
Complementary data-intelligence model for river flow simulation
...Show More Authors

View Publication
Crossref (87)
Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sat May 28 2022
Journal Name
Abstract And Applied Analysis
Discretization Fractional-Order Biological Model with Optimal Harvesting
...Show More Authors

In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Oct 07 2020
Journal Name
Journal Of Interdisciplinary Mathematics
Discrete an SIS model with immigrants and treatment
...Show More Authors

In this paper, a discrete SIS epidemic model with immigrant and treatment effects is proposed. Stability analysis of the endemic equilibria and disease-free is presented. Numerical simulations are conformed the theoretical results, and it is illustrated how the immigrants, as well as treatment effects, change current model behavior

View Publication Preview PDF
Scopus (12)
Crossref (6)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Using Remote Sensing and Geographic Information Systems to Study the Change Detection in Temperature and Surface Area of Hamrin Lake
...Show More Authors

This study was conducted on Lake Hamrin situated in Diyala governorate, focal Iraq, between latitudes 44º 53ʹ 26.16 '- 45º 07 ʹ 28.03ʺ and 34º 04ʹ 24.75ʺ ــ 34º 19ʹ 12.74ʺ . As in this study, the surface area of Hamrin Lake was calculated from satellite images during the period from October 2019 to September 2020, with an average satellite image for each month, furthermore,by utilizing the Normalized Differences Water Index (NDWI), the largest surface area was 264,617 km2 for October and the lowest surface area 140.202 km2 for September. The surface temperature of the lake water was also calculated from satellite images of the Landsat 8 satellite, based on ban

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sun Oct 25 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
EFFECT OF EXERCISES USING DIFFERENT RESISTORS IN THE DEVELOPMENT OF THE SPECIAL STRENGTH OF THE ARMS AND THE COMPLETION OF JAVELIN FOR THE ATHLETES OF THE SCHOOL SPECIALIZED ATHLETICS
...Show More Authors

Athletics are different from other games as a competition between individuals to show their competence and physical ability to achieve new record numbers in the various activities and various between the boards, jumping and throwing and each type of these activities in particular performance so found the researcher to find the method of training resistors in the development of special power and achievement In the effectiveness of javelin, where the researchers chose the sample of the athletes from the specialized school of athletics to effectively throw the spear at the ages of 15-17 years and carried out the tests of the research, which includes the strength of the speed of the arms and explosive power and The various resistance exercise

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 28 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Forecasting the performance and profitability of companies using the equation of Tobin’sq
...Show More Authors

The main objective and primary concern to every investor not only to achieve a greater return on his or her investments, but also to create the largest possible value of these investments the, researchers and those interested in the field of investment and financial analysis  try to develop standards  for performance      valuation      is guided through the                                     &nbsp

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 28 2023
Journal Name
Journal Of Planner And Development
Using GIS to identify hazardous earthquake locations in Iran
...Show More Authors

The objective of all planning research is to plan for human comfort and safety, and one of the most significant natural dangers to which humans are exposed is earthquake risk; therefore, earthquake risks must be anticipated, and with the advancement of global technology, it is possible to obtain information on earthquake hazards. GIS has been utilized extensively in the field of environmental assessment research due to its high potential, and GIS is a crucial application in seismic risk assessment. This paper examines the methodologies used in recent GIS-based seismic risk studies, their primary environmental impacts on urban areas, and the complexity of the relationship between the applied methodological approaches and the resulting env

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 12 2024
Journal Name
World Water Policy
The effect of natural factors on changing soil uses in the marshes: An experimental study using Landsat satellite data
...Show More Authors

The study aimed to analyze the effect of meteorological factors (rainfall rate and temperature) on the change in land use in the marshes of the Al‐Majar Al‐Kabir region in southern Iraq. Satellite images from Landsat 7 for 2012 and Landsat 8 for 2022 were used to monitor changes in the land coverings, the images taken from the Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) sensors of the Landsat satellite. Geometric correction was used to convert images into a format with precise geographic coordinates using ArcMap 10.5. The maximum likelihood classification method was used to examine satellite image data using a supervised approach, and the data were analyzed statistically. We obtained clear images of the area,

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref