The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow management at international airports. The implementation of this method has shown superior performance to previous methods in terms of reducing errors, delays and associated costs
The main objective of this study is to measure the Impact of global financial crisis on some indicators of the Saudi Arabia's economy using the Mendel-Fleming model, the importance of the study applied by focusing on the theme of general equilibrium in the face of fluctuations in the global economy. Study used a descriptive approach and the methodology of econometrics to construct the model. Study used Eviews Program for data analysis. The Data was collected from the Saudi Arabian Monetary Agency, for the period (1997-2014).Stationery of the variables was checked by Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit roots tests. And also the co-integration
... Show MoreThe issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreA steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.
The demand for electronic -passport photo ( frontal facial) images has grown rapidly. It now extends to Electronic Government (E-Gov) applications such as social benefits driver's license, e-passport, and e-visa . With the COVID 19 (coronavirus disease ), facial (formal) images are becoming more widely used and spreading quickly, and are being used to verify an individual's identity, but unfortunately that comes with insignificant details of constant background which leads to huge byte consumption that affects storage space and transmission, where the optimal solution that aims to curtail data size using compression techniques that based on exploiting image redundancy(s) efficiently.
<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreThe current research aims to analyze the role of participatory budgeting in improving performance, especially during crises such as the Covid-19 crisis. The research used the descriptive analytical method to reach the results by distributing 100 questionnaires to a number of employees in Iraqi joint stock companies and at multiple administrative levels. The research came to several important conclusions, the most important of which is that the bottom-up approach to budgeting produces more achievable budgets than the top-down approach, which is imposed on the company by senior management with much less employee participation. Additionally, there is a better information flow from the lower levels of the organization to the upper management
... Show MoreContracting companies play a prominent role today in economic activity, due to their contribution to the implementation of major construction projects which together constitute the infrastructure of society. Most construction projects also suffer from exceeding the time and cost specified and planned for the completion of the project, and this comes for several reasons, including the work environment, country conditions, The method of managing project costs and the techniques used in its implementation Accordingly, the concepts of lean construction came, which help in addressing the causes of waste, both in time and cost, in addition to the fact that project management needs techniques that are useful in controlling the control and manag
... Show MoreAbstract:
The aim of the research is to demonstrate the impact of the professional specialization of the audit companies in the detection of fraud in the financial statements of the economic units listed in the Iraqi market for securities for the period 2014-2015 through the application of the model (Carcello) to test the hypothesis of research on the impact of professional specialization of audit companies in the detection of fraud in lists The effect of the variables was revealed through the use of statistical models of logistic regression model and correlation coefficient. After testing the hypotheses of the research, a number of conclusions were reached. The most important was the existence of a signi
... Show More