The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow management at international airports. The implementation of this method has shown superior performance to previous methods in terms of reducing errors, delays and associated costs
Abstract
The study aims to identify the levels of core competencies dimensions and types of organizational flexibility in the investigated organization, as well as to determine the nature of the relationship and the impact of core competencies dimensions with the process of organizational flexibility. Thus, a number of research questions were presented to express the research problem as follows:
- What is the level of the investigated individuals' awareness to core competencies and organizational flexibility across their dimensions and types in the investigated organization?
- To what extent are core competencies and organizational flexibility available in the Organiz
Echinococcosis is a zoonotic disease caused by the larval stage of the tapeworm Echinococcus granulosus. This disease is an important public health and a significant economic issue in Iraq, where the lungs and livers are the popular places of infection. The aim of the current study focused on using the molecular techniques in the detection of an E. granulosus strain that causes cystic echinococcosis to human, sheep and cattle in Thi-Qar province, Iraq. In the current study, thirty isolates of E. granulosus were collected from 10 human hydatid cysts through surgery done at Al-Hussein Imam Teaching Hospital in Thi-Qar province and 10 sheep with 10 cattle hydatid cysts were obtained from the slaughterhouse in Thi-
... Show MoreRHS Nasser, NHY Al-Afoun, SPECIALUSIS UGDYMAS, 2022
Poly (3-hydroxybutyrate) (PHB) is a typical microbial bio-polyester reserve material; known as “green plastics”, which produced under controlled conditions as intracellular products of the secondary metabolism of diverse gram-negative/positive bacteria and various extremophiles archaea. Although PHB has properties allowing being very attractive, it is too expensive to compete with conventional and non-biodegradable plastics. Feasibility of this research to evaluate the suitability of using a watermelon-derived media as an alternative substrate for PHB synthesis under stress conditions was examined. Results, include the most nutrients extraction, indicated that the watermelon seeds contain a high content of nutrients makes them a promisi
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show More