The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow management at international airports. The implementation of this method has shown superior performance to previous methods in terms of reducing errors, delays and associated costs
<span lang="EN-US">We are living in the 21<sup>st</sup> century, an era of acquiring necessity in one click. As we, all know that technology is continuously reviving to stay ahead of advancements taking place in this world of making things easier for mankind. Technology has been putting his part in introducing different projects as we have used the field programmable gate arrays (FPGAs) development board of low cost and programmable logic done by the new evolvable cyclone software is optimized for specific energy based on Altera Cyclone II (EP2C5T144) through which we can control the speed of any electronic device or any Motor Control IP product targeted for the fan and pump. Altera Cyclone FPGAs’ is a board thro
... Show MoreAbstract :
In view of the fact that high blood pressure is one of the serious human diseases that a person can get without having to feel them, which is caused by many reasons therefore it became necessary to do research in this subject and to express these many factors by specific causes through studying it using (factor analysis).
So the researcher got to the five factors that explains only 71% of the total variation in this phenomenon is the subject of the research, where ((overweight)) and ((alcohol in abundance)) and ((smoking)) and ((lack of exercise)) are the reasons that influential the most in the incidence of this disease.
Allowing Iraqi companies to use multiple systems and policies leads to varying levels of disclosure and no high symmetry between report preparers and users, and that the adoption of integrated reporting can reduce information asymmetry. The theoretical side addressed the concepts of these variables, and in the practical side the binary variable (0, 1) was used. To compensate for the value of the independent variable (integrated reporting) based on the Central Bank of Iraq’s classification of banks according to the (CAMLES) index, and the dependent variable (information asymmetry) was measured through two measures (price difference, unusual return), the research community was represented by (5) Banks out of the total of banks li
... Show MoreMany literary research papers have dealt with the work of Margaret Atwood's The Handmaid's Tale (1985) as a feminist work. However, nearly few studies combine social oppression with religious extremism. To bridge this gap, the present study aims at exploring the use of totalitarian theocracy of terror to oppress its citizens in the name of religion. In other words, it explicates the way religion is used to brutally suppress and exploit people in general and vulnerable women in particular. To meet this objective, the study adopted the qualitative descriptive method to describe how religion is used as a contradictory controlling means in Gilead discourse. It also adopted the Foucault theory in analyzing the data of the study, illu
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show More