Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), c
... Show MoreIn addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreBackground: Congenital heart disease is one of the most common developmental anomalies in children. These patients commonly have poor oral health that increase caries risk. Dental management of children with congenital heart disease requires special attention, because of their heightened susceptibility to infectious endocarditis. The aims of this study were to assess the severity of dental caries of primary and permanent teeth and treatment needs in relation to nutritional indicator (Body Mass Index) among children with congenital heart disease. Materials and Methods: In this case-control study, case group consisted of 399 patients aged between 6-12 years old with congenital heart disease were examined for dental status in Ibn Al-Bitar spec
... Show MoreBackground: The association between oral microbial infection and systemic disease is not a new concept. A major confounding issue is that oral infections often are only one of the many important factors that can influence systemic diseases .Objective: This study was conducted to evaluate the periodontal health status of patients with acquired coronary heart disease. Type of the study: Cross-sectional study.Methods: The study group consisted of 200 patients with an age range (35-70) years, having coronary heart disease .This study group were compared to a control group of non-coronary heart disease (200 individuals ) matching with age and gender. The oral parameters were examined including the periodontal conditions, assessment of periodo
... Show MoreSKF Dr. Abbas S. Alwan, Dhurgham I. Khudher, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2015
In this study we focused on the determination of influence the novel synthesized thiosemicarbazide derivative "2-(2-hydroxy-3-methoxybenzylidene) hydrazinecarbothioamide" (HMHC) influenced the corrosion inhibition of mild steel (MS) in a 1.0 M hydrochloric acid acidic solution.This is in an effort to preserve the metal material by maintaining it from corrosion.The synthesized inhibitor was characterized using elemental analysis, and NMR-spectroscopy. Then the corrosion inhibition capability of (HMHC) was studied on mild steel in an acidic medium by weight loss technique within variables [temperature, inhibitor concentration, and time]. The immersion periods were [1:00, 3:00, 5:00, 10:00, 24:00, and 72:00] hours and the tem
... Show MoreIn the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The
... Show MoreAO Dr. Ali Jihad, Journal of Physical Education, 2021