Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Fire incidences are classed as catastrophic events, which mean that persons may experience mental distress and trauma. The development of a robotic vehicle specifically designed for fire extinguishing purposes has significant implications, as it not only addresses the issue of fire but also aims to safeguard human lives and minimize the extent of damage caused by indoor fire occurrences. The primary goal of the AFRC is to undergo a metamorphosis, allowing it to operate autonomously as a specialized support vehicle designed exclusively for the task of identifying and extinguishing fires. Researchers have undertaken the tasks of constructing an autonomous vehicle with robotic capabilities, devising a universal algorithm to be employed
... Show MoreKE Sharquie, R Hayani, J Al-Rawi, A Noaimi, SH Radhy, CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2010
Abstract:
The current research included " Diagnosis of the reality of the gap for the requirements of Business Continuity Management System According to International Standard (ISO 22301: 2012) in Midland Refineries Company (Daura Refinery) " , for development of an administrative system for Business Continuity is considered a priority in the present day, and in the light of the organizations dependence on computers and information technology in work and communication with others . the international legitimacy (represented by the international organization for standardization (ISO)) remains the basis for matching and commitment , and the importance of the application of Business Continuity Management Syst
... Show MoreChronic liver disease (CLD) can potentially cause disruptions in the normal functioning of various endocrine organs responsible for producing hormones. As a result, individuals suffering from CLD may experience fluctuations or imbalances in the levels of certain hormones within their bodies. As well as they frequently have suppressed immune systems making them more vulnerable to parasite infections. The primary objective of this study was to investigate the association between Toxoplasma gondii infections and liver function by analyzing the interplay between these parasites and hormones. This study was conducted in Baghdad, Iraq from December 2021 to May 2022. One hundred and twenty male patients with Chronic liver disease (CLD) (ag
... Show MoreObjective: Rheumatoid arthritis (RA) patients have increased morbidity and mortality from premature cardiovascular (CV) disease (CVD). Framingham risk score (FRS) is a simplified coronary prediction tool developed to enable clinicians to assess the risk of a cardiovascular event and to identify candidate patients for risk factors modifications worldwide. The predictive ability of the FRS varies between populations, ethnic groups, and socio-economic status. The aim of this study is to find if there is any correlation between the Framingham risk score and the inflammatory and biochemical parameters used to measure disease activity and functional ability in Iraqi patients with active RA.
The purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury p
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreA Multiple System Biometric System Based on ECG Data