Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
The rapid increase in the number of older people with Alzheimer’s disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems because of a large number of people affected. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available, and to plan for the future. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage caused to the brain due to AD leads t
... Show MoreThe aim of this study to identify patterns of cerebral control (right and left) for second grade students in the collage of physical education and sports science of the University of Baghdad, as well as identify the definition of theThe Effect of Using the Bybee Strategy(5ES) according to Brain Control Patterns in Learning a Kinetic Series on Floor exercises in Artistic Gymnastics for menمجلة الرياضة المعاصرةالمجلد 19 العدد 1 عام 2020effect using the (Bybee) strategy (5ES) according to brain control patterns inlearning a Kinetic series on floor exercises In artistic gymnastics for men, andidentify the best combination between the four research groups learn, use Finderexperimental method research sample consi
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
AbstractBackground:Reduced glomeular filtration rate isassociated with increasedmorbidity in patientswith coronary arterydisease.Objectives :To analyze the declining eGFR andmortality risks in a patients with Chronic KidneyDisease and have had Coronary Artery Diseaseincluding risk factors .Patientsand Methods:The study included (160)patientsbetween the ages of 16 and 87years.Glomerular filtration rate was estimated (eGFR)using the Modification of Diet in Renal Diseaseequationand was categorized in the ranges<60 mL· min−1 per 1.73 m2and≥ 60 ml/min/1.73 m2.Baseline risk factors were analyzed by category ofeGFR,.The studied patients in emergencydepartment, were investigatedusing Coxproportional hazard models adjusting for traditiona
... Show MoreThis research aimed to diagnose the perception based on Telecommunications of Iraq to the importance of activating knowledge management marketing in possession, as well as Indication of impediments to activate the management of marketing knowledge in the researched companies, also aimed to show the extent of the existence of significant differences in perception based on Telecommunications Iraqi importance of activating the management marketing knowledge in possession. To achieve the objectives of this research, the questionnaire was developed and distributed to a sample of telecommunications companies in the city of Sulaimaniya, was selected on the criterion according to the company's life in terms of seniority in the telecommunication
... Show MoreNowadays, the ideas of integrating the concepts of the environment and saving it are being famous. These ideas are widely seen in many fields of study, and language education is one of them. Thus, the identity of English Language teachers (ELT) is a step toward transferring this concept in EFL materials in ELT departments. The EFL teacher's identity takes different meanings. Sometimes, it only means the teacher who teaches the English language, and other times, it means, the cultural and social aspects that the teacher and students interact during the study course. These cultural and social aspects represent the environment in teacher’s identity. This study aims to explore the environmental identity within EFL teacher identity. The sam
... Show MoreDestiny functional theory (DFT) calculations are undertaken in order to scrutinize the electrochemical and calcium (Ca) storage characteristics of a graphyne-like aluminum nitride monolayer (G-AlNyen) as an electrode material for Ca-ion batteries (CIBs). The results show that the change in internal energy as well as the cell voltage values for the CIB with the G-AlNyen anode are comparable to others with two-dimensional 2D nano-materials. It is shown that Ca is adsorbed primarily onto the center of a hexagonal and triangular ring of G-AlNyen with absorption energies of −2.06 and −0.42 eV. After increasing the concentration of Ca atoms on G-AlNyen, the adsorption energy as well as the cell voltage decreases. Lower values of 0.15–0.32 e
... Show More