Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19) which represents a global public health crisis. Based on recent published studies, this review discusses current evidence related to the transmission, clinical characteristics, diagnosis, management and prevention of COVID-19. It is hoped that this review article will provide a benefit for the public to well understand and deal with this new virus, and give a reference for future researches.
This research deals with the topic (the position of women) in the literature literature, and the researcher cites a bouquet of woolen yarn, examples of verses and poems from this fine literature that looks at the woman with respect and appreciation. In their poems.
The research is a comparative search for Arab and Kurdish literature, by selecting six famous poets in the literature, three of them are from Arabic literature, and the other three are from Kurdish literature, and thus the research is divided into two subjects and six demands.
Finally, the researcher tried to set a brick that would be an entry point to find an indicative explanation and a suitable explanation that would break those symbols and signs that caused the exp
This research deals with the topic of "the status of women" in the literature of Sufism. The researcher cites a bundle of mystical yarns, and examples of verses and poems from this high literature that look at women with reverence and appreciation. The researcher tried to find an appropriate explanation and away from the arbitrariness of the symbols used by the poets of Islamic Sufism In their poems.
The research is considered a comparative study of the Arabic and Kurdish dialects, by selecting six famous poets from the literature of literature, three of them from Arabic literature, and the other three from Kurdish literature, so the research is di
... Show MoreThe current research aims at detecting Brain Dominance Learning Styles distinguished
and ordinary secondary school students (males and females).The researcher adopted Torrance
measure, known as ‘the style of your learning and thinking to measure Brain Dominance
Learning Styles’, the codified version of Joseph Qitami (1986); picture (a). The researcher
verified the standard properties of tool. The final application sample was 352 distinguished
and ordinary students; 176 distinguished male and female students and 176 ordinary male and
female students at the scientific fifth level of secondary school from schools in the province of
Baghdad, AL- KarKh Education Directorates in the First and Second . and who have been
Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreGoal of research is to investigate the impact of the use of effective learning model in the collection of the fourth grade students/Department of physics in the material educational methods and the development of critical thinking .to teach this goal has been formulated hypothesis cefereeten zero subsidiary of the second hypothesis .To investigate the research hypothesis were selected sample of fourth-grade students of the department of physics at the univers
... Show MoreType 1 diabetes mellitus (T1DM) is an autoimmune disease frequently associated with autoimmune thyroid disease (AITD). The study is conducted at the Specialized Center for Endocrinology and Diabetes-Baghdad at Al-karkh side, during December 2013 up to April 2014. In this study, we investigate the prevalence of anti-thyroid peroxidase (anti-TPO) antibody in(80) type1 diabetic patients with (AITD) and (30) healthy controls .Blood samples are taken for investigation of thyroid tests by using Vitek Immunodiagnstic Assay System (VIDAS).Enzeme Linked Immunosorbent Assay (ELISA) is used to detect anti-thyroid antibody(anti-TPO). The results show that age, gender and BMI (body mass index) are similar in both groups, p>0.05. Among 80 type1 diabetic
... Show More