Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Type 1 diabetes mellitus (T1DM) is an autoimmune disease frequently associated with autoimmune thyroid disease (AITD). The study is conducted at the Specialized Center for Endocrinology and Diabetes-Baghdad at Al-karkh side, during December 2013 up to April 2014. In this study, we investigate the prevalence of anti-thyroid peroxidase (anti-TPO) antibody in(80) type1 diabetic patients with (AITD) and (30) healthy controls .Blood samples are taken for investigation of thyroid tests by using Vitek Immunodiagnstic Assay System (VIDAS).Enzeme Linked Immunosorbent Assay (ELISA) is used to detect anti-thyroid antibody(anti-TPO). The results show that age, gender and BMI (body mass index) are similar in both groups, p>0.05. Among 80 type1 diabetic
... Show MoreCost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering. Elemental estimation, which in the early stage, estimates the construction costs depending on . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the rela
... Show MoreReliable estimation of critical parameters such as hydrocarbon pore volume, water saturation, and recovery factor are essential for accurate reserve assessment. The inherent uncertainties associated with these parameters encompass a reasonable range of estimated recoverable volumes for single accumulations or projects. Incorporating this uncertainty range allows for a comprehensive understanding of potential outcomes and associated risks. In this study, we focus on the oil field located in the northern part of Iraq and employ a Monte Carlo based petrophysical uncertainty modeling approach. This method systematically considers various sources of error and utilizes effective interpretation techniques. Leveraging the current state of a
... Show MoreThere is no access to basic sanitation for half the world's population, leading to Socioeconomic issues, such as scarcity of drinking water and the spread of diseases. In this way, it is of vital importance to develop water management technologies relevant to the target population. In addition, in the separation form of water treatment, the compound often used as a coagulant in water treatment is aluminum sulfate, which provides good results for raw water turbidity and color removal. Studies show, however, that its deposition in the human body, even Alzheimer's disease, can cause serious harm to health and disease development. The study aims to improve the coagulation/flocculation stage related to the amount of flakes, i
... Show MoreOrganizational learning is one of the most important means of human resource development in organizations, but most of the organizations, especially public ones do not realize the importance of organizational learning enough, and estimated his role accurately in building intellectual capital, the resource competitive importantly for organizations of the third millennium and who suffers is other end of lack of understanding of its meaning and how to prove its presence and measured in public organizations, so there is the need for this research, which aims to investigate the effect of organizational learning its processes (knowledge acquisition, Information transfer, Interpreting the information, Organizational me
... Show MorePituitary adenomas are the anterior pituitary tumors. Patients with an Aryl Hydrocarbon Receptor-Interacting Protein (AIP) mutation (AIP- mut) tend to have more aggressive tumors occurring at a younger age. Single nucleotide polymorphisms (SNPs) in many studies have been related to metabolic comorbidities in the general population. Study aims investigated the role of AIP gene SNPs with susceptibility to acromegaly pituitary- adenoma, with levels of LH, FSH, TSH, Testosterone, IGF1,GH, FT4 , Prolactin hormones and blood sugar levels. The study was conducted on a group of acromegaly patients, including 50 patients) both Genders( with hyperplasia of the ends, and apparently healthy control group. Genotyping of
... Show MoreA mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of th
... Show MorePurpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology: