Preferred Language
Articles
/
bsj-8544
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
The Mechanisms of Pricing Iraqi Crude Oil and It's Reflect On the Trends of Export (2003-2013)
...Show More Authors

Oil is considered the most important source for providing the funds for the national economic sectors. The revenues of oil constitute %95 of the GPD. Therefore, the development of the remaining sectors depend on oil..

The Iraqi Oil Marketing Organization (SOMO) depended on the a unified price for all the buyers, That may not reflect the real value of market and did not contribute in marketing the type of heavy oil. Then, to what extent had SOMO been able to market the light and heavy crude oil in a way that contains the expected increase in the crude oil production.      

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Al–bahith Al–a'alami
Mechanisms of Social Change in the Era of Digital Communication and its Effects on the Communicative Message
...Show More Authors

When sites of new communication occurs which represents the merit of the development of communication technology which is characterized by the services of ( facebook-twiter-corapora-youtube-mass space-friendster-flicker-willnecked in addition to the direct services for viber-whatsup-telgram-and chat on) play important role in changing the infrastructure of Arabic societies which are consideredas closed and not changeable societies during near period and the significance of this study comes from the importounce of this subject which is considered as anew trend of the age on the field of media and public response and acceptance inspite of what is known about Arabic society-it doesn’t accept change-this occurance is associated with terms

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Constructing fuzzy linear programming model with practical application
...Show More Authors

This paper deals with constructing a model of fuzzy linear programming with application on fuels product of Dura- refinery , which consist of seven products that have direct effect ondaily consumption . After Building the model which consist of objective function represents the selling prices ofthe products and fuzzy productions constraints and fuzzy demand constraints addition to production requirements constraints , we used program of ( WIN QSB )  to find the optimal solution

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I Article Sidebar
...Show More Authors

n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Developing an Immune Negative Selection Algorithm for Intrusion Detection in NSL-KDD data Set
...Show More Authors

With the development of communication technologies for mobile devices and electronic communications, and went to the world of e-government, e-commerce and e-banking. It became necessary to control these activities from exposure to intrusion or misuse and to provide protection to them, so it's important to design powerful and efficient systems-do-this-purpose. It this paper it has been used several varieties of algorithm selection passive immune algorithm selection passive with real values, algorithm selection with passive detectors with a radius fixed, algorithm selection with passive detectors, variable- sized intrusion detection network type misuse where the algorithm generates a set of detectors to distinguish the self-samples. Practica

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jan 29 2026
Journal Name
Journal Of Baghdad College Of Dentistry
An Assessment of Salivary Leptin and Resistin Levels in Type Two Diabetic Patients with Chronic Periodontitis (A Comparative Study)
...Show More Authors

Background: Type 2 diabetes mellitusand chronic periodontitis hold a close relationship that has been the focus of many researches. Currently there is an appreciation to the role of adipose tissue-derived substances "the adipokines" in immune-inflammatory responses; also, there is an interest in using the simple non-invasive saliva in diagnosing and linking oral and general health problems. The current study aims to determine the periodontal health status in the chronic periodontitis patients with and without poorly or well controlled type 2 diabetes mellitus, measure the salivary levels of two adipokines "leptin and resistin", pH and flow rate and then correlate between these clinical periodontal, biochemical and physical parameters in eac

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Using Crushed Glass with Sand as a Single and Dual Filter Media for Removal of Turbidity from Drinking Water
...Show More Authors

View Publication
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Synthesis and Characterization of some biologically active transition metal complexes for a ligand derived from dimedone with mixed ligands.
...Show More Authors

The aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1

... Show More