Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Abstract
The current research aims to clarify the role of local policies on the performance of the province of Baghdad, after studies proved practical experience what those policies of the major role and effect on the lives of citizens, as well as alleviate the burden on central government, which make a lot of states give local governments broad powers and her specialty funds for the exercise of its vital role and actor in various joints of local development, research has indentified a problem in a number of questions such as: do you have the policy of the provincial council of local qualified and able to influence the performance of the province? What are the main forces of powerful and implementation of policies at all
... Show MoreBackground:Wilson’s disease (WD) is an inherited
disorder of copper metabolism that is characterized
by tremendous variation in the clinical presentation.
Objective: To assess demographic distribution,
clinical presentations, diagnostic evaluation, and any
association between clinical presentations and other
studied variables of a sample of Iraqi patients with
WD.
Methods: A descriptive cross sectional study with
analytic elements was conducted during 2011, from
the 1st of February till the 10th of June. The sampling
method was a convenient non-random one, carried
out through consecutive pooling of registered WD
patients. A questionnaire-form paper had been
developed for the process of data col
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreBackground: Chronic kidney disease is a worldwide health problem, with adverse outcomes of cardiovascular disease and premature death, can be divided into five stages, depending on how severe the damage is to the kidneys, or the level of decrease in kidney function, the final stage of chronic kidney disease is called end-stage renal disease, salivary immunoglobulin A is the main immunoglobulin found in mucous secretions, including tears, saliva, colostrum and secretions from the genitourinary tract gastrointestinal tract, prostate and respiratory epithelium . It is also found in small amounts in blood.This study aimedto measuresalivary flow rate and salivaryimmunoglobulin Alevels in chronic kidney disease patients on hemodialysis treatment
... Show MoreIn this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company. The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system. This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system. We calculate the range for each estimator by using the Maximum Likelihood estimator. We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after it checked by the
... Show MoreThis research sheds light on one of the important and vital topics for the banking sectors (technical requirements for the application of economic intelligence) namely by (Hardware, equipment, communication networks, software, databases). And the dimensions of the strategic success of the banks represented by(Customer satisfaction, customer trust, quality of service, growth) In the three Iraqi private banks, namely(Assyria International Investment, Mansour Investment, International Development Investment and Finance). Its implementation is an urgent necessity in order to improve the quality of its banking services to win the satisfaction of its customers and their confidence and then grow to achieve stra
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b