Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
The aim of the study is to diagnose the real level of technology usage in teaching and learning EFL at university from teachers and students’ viewpoints, and see if it is possible to achieve something of the researchers’ dream - accessing top universities. Two questionnaires have been used to measure the range of technology usage in Colleges of Education for Women, Baghdad and Iraqi Universities, and College of Basic Education. The results have shown that the reality of using technology is still away from the dream. The results have been ascribed to two reasons: The first is the little knowledge of using technology in teaching, and the second is that technology is not included in the curriculum.
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreThe study aimed at identifying the strategic gaps in the actual reality of the management of public organizations investigated to determine the strategy used based on the study model. The study relied on the variable of the general organization strategy in its dimensions (the general organization strategy, the organization's political strategy and the defense strategy of the organization) The sample of the study was (General Directorate of Traffic, Civil Status Directorate and Civil Defense Directorate), formations affiliated to the Ministry of the Interior, for the importance of the activity carried out by these public organizations by providing them In order to translate the answers into a quantitative expression in the analysi
... Show MoreMetal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show More