Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Online learning is not a new concept in education, but it has been used extensively since the Covid-19 pandemic and is still in use now. Every student in the world has gone through this learning process from the primary to the college levels, with both teachers and students conducting instruction online (at home). The goal of the current study is to investigate college students’ attitudes towards online learning. To accomplish the goal of the current study, a questionnaire is developed and adjusted before being administered to a sample of 155 students. Additionally, validity and reliability are attained. Some conclusions, recommendations, and suggestions are offered in the end.
This study investigated the effect of using brainstorming as a teaching technique on the students’ performance in writing different kinds of essays and self regulation among the secondary students. The total population of this study, consisted of (51) female students of the 5th Secondary grade in Al –kawarzmi School in Erbil during the academic year 2015-2016. The chosen sample consisted of 40 female students, has been divided into two groups. Each one consists of (20) students to represent the experimental group and the control one. Brainstorming technique is used to teach the experimental group, and the conventional method is used to teach the control group. The study inst
... Show MoreReview Article Immunomodulatory Role of Cytokines in Periodontal Disease Batool Hassan Al-Ghurabi*, Maha Adel Mahmood, Zainab A. Aldhaher, Sahar Hashim Al-Hindawi Adv. life sci., vol. 11,...
The corona virus epidemic outbreak has urged an extreme worldwide effort for re‐purposing obtainable approved medications for its treatment. In this review, we're focusing on the chemicals properties andpharmacologicaleffectiveness of medicationsofsmallmolecule that are presently being evaluated in clinical trials for the management of corona virus (COVID‐19). The current review sheds light on a number of drugs that have been diagnosed to treat COVID‐19 and their biological effects.
This review sums up the developments in the biological activity of tetrazole active derivatives in recent days. Some of the deliberated derivatives of tetrazole are at present actively scientifically studied; some of them have biological activity that enables them to be studied further in the future as a drug for various biological activities. This review seeks to offer a comprehensive analysis of the efficacy and clinical advantage of biological activity for tetrazole derivatives.
Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show More