Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
The aim of this work is to shed light on the importance of medicinal plants, especially those that have extracts that have a direct effect on human health. The study and identification of botany is necessary because human life has become closely linked to the life of plants as food. In addition to using plants as food, primitive man did not stop at this point, but rather developed their use to hunt prey and also used toxic plant materials in wars. With the passage of time, the ancient man was able to link the wild plants that cover the surface of the earth and the diseases that afflict him, so he used these plants or Parts of it are for treatment. A medicinal plant is defined as one or more of its parts that contain one or more chemicals in
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreMalicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
Start your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by
المقدمة
ما كان للعرب في تاريخهم الطويل قبل الإسلام، وبعده أن يبدعوا ما أبدعوه في صنع الحضارة وتاريخها ، لولا اعتمادهم أنظمة تربوية سليمة في التنشئة والتعليم، ولولا ان عصورهم قد عرفت مربين ، ومعلمين، وعلماء اسهموا في تقديم نظريات تربوية آثرت في تقدم الفكر التربوي وفي تقدم الإنسان.
فمن الطبيعي أن تكون للعرب تربية منظمة، ولمفكريهم عناية بهذه التربية في كل حقب تاريخهم الطويل، ما د
... Show More