Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid disease predictions. A systematic literature review (SLR) strategy is used in this study to give a comprehensive overview of the existing literature on forecasting data on thyroid disease diagnosed using ML. This study includes 168 articles published between 2013 and 2022, gathered from high-quality journals and applied meta-analysis. The thyroid disease diagnoses (TDD) category, techniques, applications, and solutions were among the many elements considered and researched when reviewing the 41 articles of cited literature used in this research. According to our SLR, the current technique's actual application and efficacy are constrained by several outstanding issues associated with imbalance. In TDD, the technique of ML increases data-driven decision-making. In the Meta-analysis, 168 documents have been processed, and 41 documents on TDD are included for observation analysis. The limits of ML that are discussed in the discussion sections may guide the direction of future research. Regardless, this study predicts that ML-based thyroid disease detection with imbalanced data and other novel approaches may reveal numerous unrealised possibilities in the future
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MoreMorphological theories shape the leading platform to theoretically and practically consider the assets connected with the emergence of the city, and its growth and development over time. In this paper, five elements of the urban form are typified: structure/tissue, plot, building, block, and the street pattern will be addressed. Understanding the urban form at the different levels within its ingredients could lead to shape a base launch of how to consider the potentiality of the development and sustainability of a particular area.
One of the most serious health disasters in recent memory is the COVID-19 epidemic. Several restriction rules have been forced to reduce the virus spreading. Masks that are properly fitted can help prevent the virus from spreading from the person wearing the mask to others. Masks alone will not protect against COVID-19; they must be used in conjunction with physical separation and avoidance of direct contact. The fast spread of this disease, as well as the growing usage of prevention methods, underscore the critical need for a shift in biometrics-based authentication schemes. Biometrics systems are affected differently depending on whether are used as one of the preventive techniques based on COVID-19 pandemic rules. This study provides an
... Show MoreMany of the Iraqi agricultural researches are used spraying technique to add chemical products including pesticides and growth regulators. Various studies were performed to study the effect of these substances at different concentrations to improve plant production. In order to adopt specific criteria of spraying researches and to replicate them easily, it is a necessary to mention all information related to the spraying processes and regulations for improving sprayer’s performance by increasing the amount of pesticide deposited on the target. The current study aims to survey Iraqi researches in details and analyse them randomly. Also, to highlight on the importance of information applied in sprayi
Stuck pipe is a prevalent and costly issue in drilling operations, with the potential to cost the petroleum industry billions of dollars annually. To reduce the likelihood of this issue, efforts have been made to identify the causes of stuck pipes. The main mechanisms that cause stuck pipes include drill cutting of the formation, inappropriate hole-cleaning, wellbore instability, and differential sticking forces, particularly in highly deviated wellbores. The significant consequences of a stuck pipe include an increase in well costs and Non-Productive Time (NPT), and in the worst-case scenario, the loss of a wellbore section and down-hole equipment, or the need to sidetrack, plug, or abandon the well. This paper provides a comprehensive
... Show MoreHuman Adenosine deaminase is an essential enzyme for modulating the bioactivity of thyroid hormones, and It is important for the maturation and differentiation of lymphocytes, although its clinical importance in thyroid diseases have yet to be identified. Objective: The aim of the current study is to determine the Adenosine deaminase concentration in healthy controls, and in autoimmune thyroid diseases such as Graves' Disease, and Hashimoto's Thyroiditis. Patients and methods: A total of 183 serum specimens of 103 female patients with autoimmune thyroid diseases and 80 healthy control groups were included in this study and collected from the Baghdad Medical City, Iraq. Quantitative Human Adenosine Deaminase ELISA kits were used to estimate
... Show MoreThis research aims at building a proposed training program according to the self-regulated strategies for the mathematics teachers and to identify the effect of this program on relational Mathematics of teachers. The sample of the research was (60) Math teachers; (30) teachers as experimental group and (30) teachers as control group. The results of the current research reacheded that the proposed training program according to some self-managed learning strategies, meets the needs of trainees with remarkable effectiveness to improve the level of their teaching performance to achieve the desired goals. Training teacher according to self-managed learning strategies is effective in bringing about the transition of training to their students
... Show More