The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
A complex number is called an extended eigenvalue for an operator on a Hilbert space H if there exists a nonzero operator such that: such is called an extended eigenoperator corresponding to. The goal of this paper is to calculate extended eigenvalues and extended eigenoperators for the weighted unilateral (Forward and Backward) shift operators. We also find an extended eigenvalues for weighted bilateral shift operator. Moreover, the closedness of extended eigenvalues for the weighted unilateral (Forward and Backward) shift operators under multiplication is proven.
The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of
... Show MoreIn this study, the quality assurance of the linear accelerator available at the Baghdad Center for Radiation Therapy and Nuclear Medicine was verified using Star Track and Perspex. The study was established from August to December 2018. This study showed that there was an acceptable variation in the dose output of the linear accelerator. This variation was ±2% and it was within the permissible range according to the recommendations of the manufacturer of the accelerator (Elkta).
In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.
The main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show MoreIn this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreIn this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim
... Show MoreIn this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show More