The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
In this paper, An application of non-additive measures for re-evaluating the degree of importance of some student failure reasons has been discussed. We apply non-additive fuzzy integral model (Sugeno, Shilkret and Choquet) integrals for some expected factors which effect student examination performance for different students' cases.
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show MoreIn this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system. Compare the results of suggested method with the results of another method (closed Newton-Cotes formula) Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.
The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show MoreIn this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
In this paper, a literature survey was introduced to study of enhancing the hazy images , because most of the images captured in outdoor images have low contrast, color distortion, and limited visual because the weather conditions such as haze and that leads to decrease the quality of images capture. This study is of great importance in many applications such as surveillance, detection, remote sensing, aerial image, recognition, radar, etc. The published researches on haze removal are divided into several divisions, some of which depend on enhancement the image, some of which depend on the physical model of deformation, and some of them depend on the number of images used and are divided into single-image and multiple images dehazing model
... Show More