Preferred Language
Articles
/
bsj-8504
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Statistical Analysis of COVID-19 Data in Iraq
...Show More Authors

The analysis of COVID-19 data in Iraq is carried out. Data includes daily cases and deaths since the outbreak of the pandemic in Iraq on February 2020 until the 28th of June 2022. This is done by fitting some distributions to the data in order to find out the most appropriate distribution fit to both daily cases and deaths due to the COVID-19 pandemic. The statistical analysis includes estimation of the parameters, the goodness of fit tests and illustrative probability plots. It was found that the generalized extreme value and the generalized Pareto distributions may provide a good fit for the data for both daily cases and deaths. However, they were rejected by the goodness of fit test statistics due to the high variability of the data.<

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning
...Show More Authors

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Mar 19 2023
Journal Name
Journal Of Educational And Psychological Researches
An Assessment of People with Intellectual Disabilities Practicing of Physical Activities and Its Challenges under Corona Pandemic (Covid-19) from Their Families' Point of View
...Show More Authors

Abstract

This research aims to assess the practice of physical activities by people with intellectual disabilities and its challenges during the Coronavirus (COVID-19) pandemic from their families' point of view. The research sample consisted of (87) individuals from families with intellectual disabilities in the Makkah region. The sample was selected by the simple random method where the researcher used the descriptive analytical approach. A questionnaire of (32) items was used as the research tool to collect data. The findings of the study showed that the assessment level of practicing physical activities by people with intellectual disabilities was low. The public facilities dimension ranked first with a moder

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
A mathematical model for the dynamics of COVID-19 pandemic involving the infective immigrants
...Show More Authors

‎  Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19    pandemic  ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (9)
Scopus Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Dec 15 2021
Journal Name
Al-academy
The communicative education of fine arts in the COVID-19 crisis and its manifestations in the modernization of the works of the Iraqi painter "Nabil Ali as a model"
...Show More Authors

 This study attempts to address the importance of communicative digitization in the field of various arts for the sake of continuity of shopping and aesthetic, artistic and intellectual appreciation of artistic achievements by the recipient on various places of their residence in light of the COVID 19 crisis, and to highlight the importance of the plastic arts of the Iraqi painter exclusively and how it expresses in a contemporary way the environment or life reality in Iraq in light of this crisis. With all its implications affecting the life reality from various aspects and methods of its negative and positive employment. As for the research procedures, the researcher reviewed the research methodology represented by the descriptive ana

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Wasit Journal For Pure Sciences
Suitable Methods for Solving COVID-19 Model in Iraq
...Show More Authors

Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 30 2021
Journal Name
Iraqi Journal Of Science
Analysis and Prediction of COVID-19 Outbreak by a Numerical Modelling
...Show More Authors

Pandemic COVID-19 is a contagious disease affecting more than 200 countries, territories, and regions. Recently, Iraq is one of the countries that have immensely suffered from this outbreak. The Kurdistan Region of Iraq (KRI) is also prone to the disease. Until now, more than 23,000 confirmed cases have been recorded in the region. Since the onset of the COVID-19 in Wuhan, based on epidemiological modelling, researchers have used various models to predict the future of the epidemic and the time of peak, yielding diverse numbers in different countries. This study aims to estimate the basic reproductive number [R0] for COVID-19 in KRI, using the standard SIR (Susceptible-Infected-Removed) epidemic model. A system of non

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Air Quality Analysis of the Capitol City in Developing Countries During COVID-19 Emergency Care Based on Internet of Things Data
...Show More Authors

     This paper attempts to develop statistical modeling for air-conditioning analysis in Jakarta, Indonesia, during an emergency state of community activity restrictions enforcement (Emergency CARE), using a variety of parameters such as PM10, PM2.5, SO2, CO, O3, and NO2 from five IoT-based air monitoring systems. The parameters mentioned above are critical for assessing the air quality conditions and concentration of air pollutants.  Outdoor air pollution concentration variations before and after the Emergency CARE, which was held in Indonesia during the COVID-19 pandemic on July 3-21, 2021, were studied. An air quality monitoring system based on the IoT generates sensor data

... Show More
View Publication Preview PDF
Scopus Crossref