The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
Coronavirus disease (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus, SARS-CoV-2. Infection with SARS-CoV-2 primarily occurs through binding to angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in various anatomical sites, including the nasopharynx, lungs, cardiovascular system, and gastrointestinal and genitourinary tracts. This study aimed to nurses' knowledge and protective health behaviors about prevention of covid-19 pandemic complications.
A descriptive design stud
Communities seek to achieve the economic growth through the optimal use of resources. The human resource is considered the most important of those resources where the insurance institutions take the larger role in the protection of this resource and reducing the impact caused by dangers realization that endures. The general Iraqi insurance company is considered the leading in the field of life insurance since it was founded, and until now.
This research is based on an analyzing the relation between premiums and compensations of life insurance, for individual and the group insurance, and a reality of the
... Show MoreBackground: The COVID-19 virus outbreak had a massive effect on many parts of people's lives, as they were advised to quarantine and lockdown to prevent the virus from spreading, which had a big impact on people's mental health, anxiety, and stress. Many internal and external factors lead to stress. This negatively influences the body's homeostasis. As a result, stress may affect the body's capacity to use energy to defend against pathogens. Many recent investigations have found substantial links between human mental stress and the production of hormones, prohormones, and/or immunological chemicals. some of these researches have verified the link between stress and salivary cortisol levels. The aim of this study is to measure salivary corti
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show MoreElectronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreThe aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show MoreThe fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
Worldwide, hundreds of millions of people have been infected with COVID-19 since December 2019; however, about 20% or less developed severe symptoms. The main aim of the current study was to assess the relationship between the severity of Covid-19 and different clinical and laboratory parameters. A total number of 466 Arabs have willingly joined this prospective cohort. Out of the total number, 297 subjects (63.7%) had negative COVID-19 tests, and thus, they were recruited as controls, while 169 subjects (36.3%) who tested positive for COVID-19 were enrolled as cases. Out of the total number of COVID-19 patients, 127 (75.15%) presented with mild symptoms, and 42 (24.85%) had severe symptoms. The age range for the partic
... Show MoreBackground and Purpose: Coronavirus has posed an unfamiliar threat to the world. Despite such circumstances, Malaysians continue to stay optimistic by keeping abreast with updates and mostly by seeking refuge in hopeful and consoling messages shared by fellow citizens. This study identified Facebook postings with positive messages, posted by Malaysians during the Movement Control Order (MCO) implemented by the Malaysian government as a form of prosocial behaviour. Methodology: Through an analytic framework consisting of Positive Discourse Analysis and Critical Discourse Analysis, 15 Facebook postings related to COVID-19 were selected and identified as positive discourse, which were coded and categorised using a thematic analysi
... Show More