Preferred Language
Articles
/
bsj-8504
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering form Factors for Odd-A 2s-1d Shell Nuclei
...Show More Authors

The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1  , and , 2  which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
أثـر الأدوات الداخلية لحوكمة الشركة على رأس المال الـعـامـل وانعكاسهما علـى القيـمـة الاقتصـادية المضـافـة: دراســة تطبيقيـة علـى عينــة مـــن الشـركــات الصنــاعــيــة المـدرجــة في بورصــة عـمّــان لــلأوراق المـالـيـة
...Show More Authors

Abstract

Objective of this research focused on testing the impact of internal corporate governance instruments in the management of working capital and the reflection of each of them on the Firm performance. For this purpose, four main hypotheses was formulated, the first, pointed out its results to a significant effect for each of corporate major shareholders ownership and Board of Directors size on the net working capital and their association with a positive relation.  The second, explained a significant effect of net working capital on the economic value added, and their link inverse relationship, while the third, explored a significant effect for each of the corporate major shareholders ownershi

... Show More
View Publication Preview PDF
Crossref