The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreSince its discovery in December 2019, corona virus was outbreak worldwide with very rapid rate, so it described by WHO as pandemic. It associated with severe acute respiratory distress syndrome, and can enter to cells through Angiotensin Converting Enzyme 2 (ACE 2) receptor which play an important role as regulator for blood pressure. Hypertension is a potential risk factor for sever acute respiratory syndrome COVID-19, and associated with high mortality rate as shown in many epidemiological studies. Moreover, specific antihypertensive medications that infected patients were receiving are not known; only data about renin-angiotensin-aldosterone system (RAAS) are available.
This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreAbstract:
Typological analysis about the negation marker in different languages is one of the fields of research that has attracted much attention. In Persian language, this constituent has been analysed from different aspects. This study aimed to analyse different aspects of negation marker in the adjectives, the noun phrases and the verb phrases based on typological analysis. Many studies have been revealed that the negation in adjectives has shown lexically and morphologically. In the noun phrases, /hich/ has used as a negative marker necessarily marking the verb phrase as negative too. In the verb phrases, negation occurs morphologically by the addition of the prefix /n
... Show MoreThe coronavirus disease 2019 (COVID-19) pandemic and the infection escalation around the globe encourage the implementation of the global protocol for standard care patients aiming to cease the infection spread. Evaluating the potency of these therapy courses has drawn particular attention in health practice. This observational study aimed to assess the efficacy of Remdesivir and Favipiravir drugs compared to the standard care patients in COVID-19 confirmed patients. One hundred twenty-seven patients showed the disease at different stages, and one hundred and fifty patients received only standard care as a control group were included in this study. Patients under the Remdesivir therapy protocol were (62.20%); meanwhile, there (30.71
... Show MoreThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) or 2019 novel coronavirus (2019-nCoV) is quickly spreading to the rest of the world, from its origin in Wuhan, Hubei Province, China. And becoming a global pandemic that affects the world's most powerful countries. The goal of this review is to assist scientists, researchers, and others in responding to the current Coronavirus disease (covid-19) is a worldwide public health contingency state. This review discusses current evidence based on recently published studies which is related to the origin of the virus, epidemiology, transmission, diagnosis, treatment, and all studies in Iraq for the effect of covid-19 diseases, as well as provide a reference for future research
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More